
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS100 COMPUTER PROGRAMMING

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, Web

Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by

learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

CSE DEPARTMENT, NCERC PAMPADY Page 4

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

CO1
Describe fundamentals of C programming such as variables, methods, conditional and

iterative execution.

CO2
Analyze and solve programming problems using a procedural and algorithmic approach

with functional decomposition

CO3
Design programs that demonstrate effective use of advanced C features including pointers

and memory management

CO4
Develop and execute computerized solution for various problems in functions using

appropriate C language constructs

CO5
Identify sorting and searching techniques to solve application programs

CO6
Identify and Implement file operations for given application

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

CO1 3 3 2 2

CO2 3 3 2 2 2 2 2

CO3 2 2 3 3 3 3

CO4 3 2 3 3 3 2 3 2 3

CO5 3 2 3 2 3 2 2 2

CO6 3 3 3 3 2 2 2

CSE DEPARTMENT, NCERC PAMPADY Page 5

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PSO

1

PSO

2

PSO

3

CO1 3 2

CO2 3 3

CO3 3 3 2

CO4 3 3

CO5 3 3

CO6 3 3

•

6

SYLLABUS

•

7

•

8

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Differentiate between Keywords and

Identifiers in C with examples.

CO1 K3 25

2 Describe about the fundamental data-types

in C.

CO1 K2 34

3 Write a C program to print the Fibonacci

series.

CO1 K3 61

4 Explain with example, how break and

continue constructs are useful in C

programming.

CO1 K2 66

5 Explain the working of loop control

statements in C with examples.

CO1 K5 58

6 Write a C program to find the largest of

three numbers.

CO1 K3 44

7 Point out the different pre-processor

directives with its uses and example.

CO1 K4 20

•

9

8 Write a C program to swap two numbers. CO1 K3 33

9 Write a C program to find the largest

among three given numbers, by applying

conditional operator.

CO1 K3 66

10 Write a C program to print the factors of a

given number.

CO1 K5 59

11 Write a C program for menu driven

calculator.

CO1 K5 53

12 Explain the syntax of switch construct in C. CO1 K2 53

MODULE II

1 Write a C program to concatenate two

strings without using built in function.

CO2 K3 78

2 Write a C program to input the array with

10 characters and print the array in reverse

order.

CO2 K6 69

3 Write a C program to input names in an

array and sort the names in the increasing

ASCII value.

CO2 K6 72

•

10

4 Compare and Contrast C data structures

Structure and Union with example.

CO2 K4 82,94

5 Write a C program to find the count of the

inputted character in a given string.

CO2 K3 75

6 Write a C program to sort names in an

array in lexicographical order.

CO2 K3 69

7 Write a C program to find the number of

vowels, consonants, digits and white space

in a string.

CO2 K3 75

8 Write a C program for matrix addition. CO2 K6 73

9 Distinguish between an array and a

structure with example.

CO2 K4 69,82

10 Write a C program to copy a string without

built in function.

CO2 K3 75

11 Differentiate between Structure and Union

with example.

CO2 K4 82,94

12 Write a C program to find the frequency of

character in a given string.

CO2 K3 75

13 Write a C program to find the largest and

smallest element in an integer array.

CO2 K3 69

•

11

14 Write a C program to print an array in

reverse order.

CO2 K3 69

MODULE III

1 Explain the concept of pointers with

declaration and initialization.

CO3 K2 103

2 Write a program to sort elements of an

array using pointers.

CO3 K6 111

3 Write a program to create an employee

structure and access its member variables

using pointers.

CO3 K6 122

4 Write a program to swap two numbers

using pointers.

CO3 K3 104

5 Write a program to create a structure with

name student and member variables name,

number and rank and then access the

structure members with pointers.

CO3 K6 123

6 Write a program to read a string and print

the string in the output terminal using

pointers.

CO3 K6 113

•

12

7 Write a program to read a string and find

the number of characters in the string using

pointers.

CO3 K6 113

8 Write a program to find the length of a

string using pointers.

CO3 K3 114

9 Write a program to concatenate two strings

using pointers.

CO3 K3 115

10 Write a program to copy string using

pointers.

CO3 K3 113

11 Write a program to print a string using

pointers.

CO3 K3 113

12 Write a program to access an array using

pointers.

CO3 K3 112

13 Explain the concept of structure arrays in

C.

CO3 K5 123

14 Explain the concept of pointer arrays in C. CO3 K2 103

15 Explain the concept of dynamic memory

allocation in C.

CO3 K5 102

16 Point out the advantages and disadvantages

of using pointers.

CO3 K4 107

•

13

17 Point out the benefits of using pointers. CO3 K4 108

MODULE IV

1 Describe recursion with an example. CO4 K2 145

2 Justify the need of functions in C. CO4 K1 131

3 Write a C program to find factorial of a

given number using recursive function.

CO4 K3 145

4 Write a C program to swap numbers by: (a)

call by reference and (b) call by value.

CO4 K6 147

5 Write a C program to find the sum of

natural numbers using recursion.

CO4 K3 145

6 Write a C program to find the reverse of a

number using recursive function.

CO4 K6 145

7 Write a C program to find the sum of digits

of a number using recursive function.

CO4 K6 145

8 Explain how the memory allocation is

performed dynamically in C.

CO4 K2 102

9 Write a C program using function to check

whether a number is Armstrong or not.

CO4 K6 131

•

14

10 Write a C program to find the reverse of a

number using recursive function.

CO4 K6 145

11 Write a C program to find prime number or

not using recursion.

CO4 K3 145

12 With suitable example explain different

function parameter passing methods in C.

CO4 K2 147

13 Write a C program to check whether a

given number is perfect number or not

using function.

CO4 K3 145

14 Write a C program to find nCr using

function.

CO4 K3 145

15 Write a C program to simulate a menu

driven calculator with addition,

subtraction, multiplication, division and

exponentiation operations. Use a separate

function to implement each operation

CO4 K6 131

16 Write a C program to print Fibonacci series

using recursion.

CO4 K3 145

MODULE V

1 Explain the working of selection sort with

an example.

CO5 K5 166

•

15

2 Give the syntax and use of external storage

class.

CO5 K2 190

3 Write a C program to search an element in

an array using binary search.

CO5 K3 172

4 What is meant by scope of a variable in C? CO5 K1 180

5 Illustrate the steps of sorting of the

following set of numbers using selection

sort: 15,10,11,18,12

CO5 K6 166

6 Describe bitwise operations in C. CO5 K3 196

7 Write a C program to find the second

largest element of an unsorted array.

CO5 K3 157

8 Differentiate between linear and binary

search techniques in C.

CO5 K4 172

9 Explain register storage class with an

example.

CO5 K2 195

10 What are the different storage classes in C?

Explain with example.

CO5 K1 188

MODULE VI

•

16

1 Explain any Six File opening modes

available in C.

CO6 K2 199

2 Write any two file handling functions used

to write data into text files.

CO6 K3 202

3 Write a C program to create a file and store

information about a person, in terms of his

name, age and salary.

CO6 K6 201

4 What is the purpose of fopen() and fclose(

) functions in C.

CO6 K1 209

5 What is the purpose of getw() and putw()

function?

CO6 K1 199

6 Discuss the concept of binary file in C. CO6 K2 204

7 Write a C program to copy the content of a

given text file to a new file after replacing

every lowercase letters with corresponding

uppercase letters.

CO6 K6 207

8 Write a C program to write a set of

numbers to a file and separate the odd and

even numbers to two separate files.

CO6 K3 199

9 What is an unformatted data file? List the

applications of such files.

CO6 K1 204

•

17

10 Write a C program to copy the contents of

a text file to another file. Pass the filename

using command line arguments.

CO6 K6 201

11 Discuss about unformatted data files and

write on any two library functions

associated with this.

CO6 K2 204

12 With suitable example explain any four

different File I/O operations in C?

CO6 K5 198

•

18

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 3D Array 210

2 Enumeration (ENUM) in C 211

•

19

MODULE 1

Overview of C Language

C is a structured programming language developed by Dennis Ritchie in 1973 at Bell

Laboratories. It is one of the most popular computer languages today because of its

structure, high-level abstraction, machine independent feature etc. C language was

developed to write the UNIX operating system, hence it is strongly associated with

UNIX, which is one of the most popular network operating system in use today.

Features of C language

 It is a robust language with rich set of built-in functions and operators that can

be used to write any complex program.

 The C compiler combines the capabilities of an assembly language with features

of a high-level language.

 Programs Written in C are efficient and fast. This is due to its variety of data type

and powerful operators.

 It is many time faster than BASIC.

 C is highly portable this means that programs once written can be run on another

machines with little or no modification.

 Another important feature of C program, is its ability to extend itself.

 A C program is basically a collection of functions that are supported by C library.

We can also create our own function and add it to C library.

•

20

 C language is the most widely used language in operating systems and embedded

system development today.

Different parts of C program

 Pre-processor

 Header file

 Function

 Variables

 Statements & expressions

 Comments

Pre-processor

#include is the first word of any C program. It is also known as a pre-processor.

The task of a pre-processor is to initialize the environment of the program, i.e to link

the program with the header files required.

So, when we say #include <stdio.h>, it is to inform the compiler to include

the stdio.h header file to the program before executing it.

Preprocessor

 Syntax/Description

•

21

Macro

Syntax: #define

This macro defines constant value and can be

any of the basic data types.

Header file

inclusion

Syntax: #include <file_name>

The source code of the file “file_name” is

included in the main program at the specified

place.

Conditional

compilation

Syntax: #ifdef, #endif, #if, #else, #ifndef

Set of commands are included or excluded in

source program before compilation with respect

to the condition.

Other directives

Syntax: #undef, #pragma

#undef is used to undefine a defined macro

variable. #Pragma is used to call a function

before and after main function in a C program.

Header file

A Header file is a collection of built-in(readymade) functions, which we can directly

use in our program. Header files contain definitions of the functions which can be

incorporated into any C program by using pre-processor #include statement with

the header file. Standard header files are provided with each compiler, and covers a

range of areas like string handling, mathematical functions, data conversion, printing

and reading of variables.

•

22

With time, you will have a clear picture of what header files are, as of now consider

as a readymade piece of function which comes packaged with the C language and

you can use them without worrying about how they work, all you have to do is

include the header file in your program.

To use any of the standard functions, the appropriate header file must be included.

This is done at the beginning of the C source file.

For example, to use the printf() function in a program, which is used to display

anything on the screen, the line #include <stdio.h> is required because the

header file stdio.h contains the printf() function. All header files will have an

extension .h

main() function

main() function is a function that must be there in every C program. Everything

inside this function in a C program will be executed. In the above

example, int written before the main() function is the return type of main()

function. we will discuss about it in detail later. The curly braces { } just after

the main() function encloses the body of main() function.

•

23

Comments

We can add comments in our program to describe what we are doing in the program.

These comments are ignored by the compiler and are not executed.

To add a single line comment, start it by adding two forward slashses // followed

by the comment.

To add multiline comment, enclode it between /* */, just like in the

program above.

Return statement - return 0;

A return statement is just meant to define the end of any C program.

All the C programs can be written and edited in normal text editors like Notepad or

Notepad++ and must be saved with a file name with extension as .c

If you do not add the extension .c then the compiler will not recognize it as a C

language program file.

C Language Basic Syntax Rules

C language syntax specify rules for sequence of characters to be written in C

language. In simple language it states how to form statements in a C language

•

24

program - How should the line of code start, how it should end, where to use double

quotes, where to use curly brackets etc.

The rule specify how the character sequence will be grouped together, to

form tokens. A smallest individual unit in C program is known as C Token. Tokens

are either keywords, identifiers, constants, variables or any symbol which has some

meaning in C language. A C program can also be called as a collection of various

tokens.

If we take any one statement:

printf("Hello,World");

Then the tokens in this statement are→ printf, (, "Hello,World",) and ;.

So C tokens are basically the building blocks of a C program.

Semicolon ;

Semicolon ; is used to mark the end of a statement and beginning of another

statement. Absence of semicolon at the end of any statement, will mislead the

compiler to think that this statement is not yet finished and it will add the next

consecutive statement after it, which may lead to compilation(syntax) error.

•

25

Comments

Comments are plain simple text in a C program that are not compiled by the

compiler. We write comments for better understanding of the program. Though

writing comments is not compulsory, but it is recommended to make your program

more descriptive. It make the code more readable.

There are two ways in which we can write comments.

1. Using // This is used to write a single line comment.

2. Using /* */: The statements enclosed within /* and */ , are used to write multi-

line comments.

Some basic syntax rule for C program

 C is a case sensitive language so all C instructions must be written in lower case

letter.

 All C statement must end with a semicolon.

 Whitespace is used in C to describe blanks and tabs.

 Whitespace is required between keywords and identifiers. We will learn about

keywords and identifiers in the next tutorial.

What are Keywords in C?

Keywords are preserved words that have special meaning in C language. The

meaning of C language keywords has already been described to the C compiler.

These meaning cannot be changed. Thus, keywords cannot be used as variable

•

26

names because that would try to change the existing meaning of the keyword, which

is not allowed. There are total 32 keywords in C language.

auto double int struct

break else long switch

case enum register typedef

const extern return union

char float short unsigned

continue for signed volatile

default goto sizeof void

do if static while

•

27

What are Identifiers?

In C language identifiers are the names given to variables, constants, functions and

user-define data. These identifier are defined against a set of rules.

Rules for an Identifier

1. An Identifier can only have alphanumeric characters (a-z , A-Z , 0-9) and

underscore(_).

2. The first character of an identifier can only contain alphabet (a-z , A-Z) or

underscore (_).

3. Identifiers are also case sensitive in C. For example name and Name are two

different identifiers in C.

4. Keywords are not allowed to be used as Identifiers.

5. No special characters, such as semicolon, period, whitespaces, slash or comma

are permitted to be used in or as Identifier.

•

28

OPERATORS IN C LANGUAGE

C language supports a rich set of built-in operators. An operator is a symbol that tells

the compiler to perform a certain mathematical or logical manipulation. Operators

are used in programs to manipulate data and variables.

C operators can be classified into following types:

 Arithmetic operators

 Relational operators

 Logical operators

 Bitwise operators

 Assignment operators

 Conditional operators

 Special operators

Arithmetic operators

C supports all the basic arithmetic operators. The following table shows all the basic

arithmetic operators.

Operator Description

+ adds two operands

•

29

- subtract second operands from first

* multiply two operand

/ divide numerator by denominator

% remainder of division

++ Increment operator - increases integer value by one

-- Decrement operator - decreases integer value by one

Relational operators

The following table shows all relation operators supported by C.

Operator Description

== Check if two operand are equal

!= Check if two operand are not equal.

•

30

> Check if operand on the left is greater than operand on the right

< Check operand on the left is smaller than right operand

>= check left operand is greater than or equal to right operand

<= Check if operand on left is smaller than or equal to right operand

Logical operators

C language supports following 3 logical operators. Suppose a = 1 and b = 0,

Operator Description Example

&& Logical AND (a && b) is false

|| Logical OR (a || b) is true

! Logical NOT (!a) is false

•

31

Bitwise operators

Bitwise operators perform manipulations of data at bit level. These operators also

perform shifting of bits from right to left. Bitwise operators are not applied

to float or double

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< left shift

>> right shift

Now lets see truth table for bitwise &, | and ^

a b a & b a | b a ^ b

0 0 0 0 0

0 1 0 1 1

•

32

1 0 0 1 1

1 1 1 1 0

The bitwise shift operator, shifts the bit value. The left operand specifies the value

to be shifted and the right operand specifies the number of positions that the bits in

the value have to be shifted. Both operands have the same precedence.

Assignment Operators

Assignment operators supported by C language are as follows.

Operator Description Example

= assigns values from right side operands to left side operand a=b

+= adds right operand to the left operand and assign the result

to left

a+=b is same as

a=a+b

-= subtracts right operand from the left operand and assign the

result to left operand

a-=b is same as

a=a-b

*= mutiply left operand with the right operand and assign the

result to left operand

a*=b is same as

a=a*b

•

33

/= divides left operand with the right operand and assign the

result to left operand

a/=b is same as

a=a/b

%= calculate modulus using two operands and assign the result

to left operand

a%=b is same as

a=a%b

Conditional operator

The conditional operators in C language are known by two more names

1. Ternary Operator

2. ? : Operator

It is actually the if condition that we use in C language decision making, but using

conditional operator, we turn the if condition statement into a short and simple

operator.

The syntax of a conditional operator is :

expression 1 ? expression 2: expression 3

Explanation:

 The question mark "?" in the syntax represents the if part.

 The first expression (expression 1) generally returns either true or false, based on

which it is decided whether (expression 2) will be executed or (expression 3)

•

34

 If (expression 1) returns true then the expression on the left side of " : " i.e

(expression 2) is executed.

 If (expression 1) returns false then the expression on the right side of " : " i.e

(expression 3) is executed.

Special operator

Operator Description Example

sizeof Returns the size of an variable sizeof(x) return size of the variable x

& Returns the address of an variable &x ; return address of the variable x

* Pointer to a variable *x ; will be pointer to a variable x

DATA TYPES IN C LANGUAGE

Data types specify how we enter data into our programs and what type of data we

enter. C language has some predefined set of data types to handle various kinds of

data that we can use in our program. These datatypes have different storage

capacities.

•

35

C language supports 2 different type of data types:

1. Primary data types:

These are fundamental data types in C namely integer(int), floating

point(float), character(char) and void.

2. Derived data types

Derived data types are nothing but primary datatypes but a little twisted or

grouped together like array, stucture, union and pointer. These are discussed

in details later.

Data type determines the type of data a variable will hold. If a variable x is declared

as int. it means x can hold only integer values. Every variable which is used in the

program must be declared as what data-type it is.

•

36

Integer type

Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

•

37

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating point type

Floating types are used to store real numbers.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

•

38

long double 10 3.4E-4932 to 1.1E+4932

Character type

Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

void type

void type means no value. This is usually used to specify the type of functions

which returns nothing. We will get acquainted to this datatype as we start learning

more advanced topics in C language, like functions, pointers etc.

VARIABLES IN C LANGUAGE

When we want to store any information (data) on our computer/laptop, we store it

in the computer's memory space. Instead of remembering the complex address of

•

39

that memory space where we have stored our data, our operating system provides us

with an option to create folders, name them, so that it becomes easier for us to find

it and access it.

Similarly, in C language, when we want to use some data value in our program, we

can store it in a memory space and name the memory space so that it becomes easier

to access it.

The naming of an address is known as variable. Variable is the name of memory

location. Unlike constant, variables are changeable, we can change value of a

variable during execution of a program. A programmer can choose a meaningful

variable name. Example : average, height, age, total etc.

Datatype of Variable

A variable in C language must be given a type, which defines what type of data the

variable will hold.

It can be:

 char: Can hold/store a character in it.

 int: Used to hold an integer.

 float: Used to hold a float value.

 double: Used to hold a double value.

 void

•

40

Rules to name a Variable

1. Variable name must not start with a digit.

2. Variable name can consist of alphabets, digits and special symbols like

underscore _.

3. Blank or spaces are not allowed in variable name.

4. Keywords are not allowed as variable name.

5. Upper and lower case names are treated as different, as C is case-sensitive, so it

is suggested to keep the variable names in lower case.

Declaring, Defining and Initializing a variable

Declaration of variables must be done before they are used in the program.

Declaration does the following things.

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

3. Until the variable is defined the compiler doesn't have to worry about allocating

memory space to the variable.

4. Declaration is more like informing the compiler that there exist a variable with

following datatype which is used in the program.

5. A variable is declared using the extern keyword, outside the main() function.

•

41

C INPUT AND OUTPUT

Input means to provide the program with some data to be used in the program

and Output means to display data on screen or write the data to a printer or a file.

C programming language provides many built-in functions to read any given input

and to display data on screen when there is a need to output the result.

scanf() and printf() functions

The standard input-output header file, named stdio.h contains the definition of

the functions printf() and scanf(), which are used to display output on screen

and to take input from user respectively.

%d inside the scanf() or printf() functions. It is known as format string and

this informs the scanf() function, what type of input to expect and

in printf() it is used to give a heads up to the compiler, what type of output to

expect.

Format String Meaning

%d Scan or print an integer as signed decimal number

%f Scan or print a floating point number

%c To scan or print a character

•

42

%s To scan or print a character string. The scanning ends at whitespace.

We can also limit the number of digits or characters that can be input or output,

by adding a number with the format string specifier, like "%1d" or "%3s", the first

one means a single numeric digit and the second one means 3 characters, hence if

you try to input 42, while scanf() has "%1d", it will take only 4 as input. Same

is the case for output.

getchar() & putchar() functions

The getchar() function reads a character from the terminal and returns it as an

integer. This function reads only single character at a time. You can use this method

in a loop in case you want to read more than one character.

The putchar() function displays the character passed to it on the screen and

returns the same character. This function too displays only a single character at a

time. In case you want to display more than one characters,

use putchar() method in a loop.

gets() & puts() functions

The gets() function reads a line from stdin(standard input) into the buffer pointed

to by str pointer, until either a terminating newline or EOF (end of file) occurs.

The puts() function writes the string str and a trailing newline to stdout.

https://www.studytonight.com/c/loops-in-c.php
https://www.studytonight.com/pointers-in-c.php

•

43

Difference between scanf() and gets()

The main difference between these two functions is that scanf() stops reading

characters when it encounters a space, but gets() reads space as character too.

If you enter name as Study Tonight using scanf() it will only read and

store Study and will leave the part after space. But gets() function will read it

completely.

CONTROL STATEMENTS

 Decision making statements

 Selection statements

 Iteration or Looping statements

 Jumping statements

Decision making with if statement

The if statement may be implemented in different forms depending on the

complexity of conditions to be tested. The different forms are,

1. Simple if statement

2. if....else statement

3. Nested if....else statement

•

44

4. Using else if statement

Simple if statement

The general form of a simple if statement is,

if(expression)

{

 statement inside;

}

 statement outside;

If the expression returns true, then the statement-inside will be executed,

otherwise statement-inside is skipped and only the statement-outside is executed.

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

•

45

 printf("x is greater than y");

 }

}

x is greater than y

if...else statement

The general form of a simple if...else statement is,

if(expression)

{

 statement block1;

}

else

{

 statement block2;

}

If the expression is true, the statement-block1 is executed, else statement-

block1 is skipped and statement-block2 is executed.

Example:

•

46

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 18;

 if (x > y)

 {

 printf("x is greater than y");

 }

 else

 {

 printf("y is greater than x");

 }

}

y is greater than x

•

47

Nested if....else statement

The general form of a nested if...else statement is,

if(expression)

{

 if(expression1)

 {

 statement block1;

 }

 else

 {

 statement block2;

 }

}

else

{

 statement block3;

}

if expression is false then statement-block3 will be executed, otherwise the

execution continues and enters inside the first if to perform the check for the

•

48

next if block, where if expression 1 is true the statement-block1 is executed

otherwise statement-block2 is executed.

Example:

#include <stdio.h>

void main()

{

 int a, b, c;

 printf("Enter 3 numbers...");

 scanf("%d%d%d",&a, &b, &c);

 if(a > b)

 {

 if(a > c)

 {

 printf("a is the greatest");

 }

 else

 {

•

49

 printf("c is the greatest");

 }

 }

 else

 {

 if(b > c)

 {

 printf("b is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

}

else if ladder

The general form of else-if ladder is,

•

50

if(expression1)

{

 statement block1;

}

else if(expression2)

{

 statement block2;

}

else if(expression3)

{

 statement block3;

}

else

 default statement;

The expression is tested from the top(of the ladder) downwards. As soon as

a true condition is found, the statement associated with it is executed.

Example :

#include <stdio.h>

•

51

void main()

{

 int a;

 printf("Enter a number...");

 scanf("%d", &a);

 if(a%5 == 0 && a%8 == 0)

 {

 printf("Divisible by both 5 and 8");

 }

 else if(a%8 == 0)

 {

 printf("Divisible by 8");

 }

 else if(a%5 == 0)

 {

 printf("Divisible by 5");

 }

 else

•

52

 {

 printf("Divisible by none");

 }

}

Points to Remember

1. In if statement, a single statement can be included without enclosing it into curly

braces { ... }

int a = 5;

if(a > 4)

 printf("success");

2. No curly braces are required in the above case, but if we have more than one

statement inside ifcondition, then we must enclose them inside curly braces.

3. == must be used for comparison in the expression of if condition, if you use = the

expression will always return true, because it performs assignment not

comparison.

4. Other than 0(zero), all other values are considered as true.

if(27)

•

53

 printf("hello");

In above example, hello will be printed.

Switch statement in C (Selection statement)

When you want to solve multiple option type problems, for example: Menu like

program, where one value is associated with each option and you need to choose

only one at a time, then, switch statement is used.

Switch statement is a control statement that allows us to choose only one choice

among the many given choices. The expression in switch evaluates to return an

integral value, which is then compared to the values present in different cases. It

executes that block of code which matches the case value. If there is no match,

then default block is executed(if present). The general form of switch statement

is,

switch(expression)

{

 case value-1:

 block-1;

 break;

 case value-2:

 block-2;

•

54

 break;

 case value-3:

 block-3;

 break;

 case value-4:

 block-4;

 break;

 default:

 default-block;

 break;

}

Rules for using switch statement

1. The expression (after switch keyword) must yield an integer value i.e the

expression should be an integer or a variable or an expression that evaluates to

an integer.

2. The case label values must be unique.

3. The case label must end with a colon(:)

4. The next line, after the case statement, can be any valid C statement.

•

55

Points to Remember

1. We don't use those expressions to evaluate switch case, which may return floating

point values or strings or characters.

2. break statements are used to exit the switch block. It isn't necessary to

use break after each block, but if you do not use it, then all the consecutive blocks

of code will get executed after the matching block.

int i = 1;

switch(i)

{

 case 1:

 printf("A"); // No break

 case 2:

 printf("B"); // No break

 case 3:

 printf("C");

 break;

}

•

56

A B C

The output was supposed to be only A because only the first case matches, but

as there is no break statement after that block, the next blocks are executed too,

until it a break statement in encountered or the execution reaches the end of

the switch block.

3. default case is executed when none of the mentioned case matches

the switch expression. The default case can be placed anywhere in

the switch case. Even if we don't include the default case, switch statement

works.

4. Nesting of switch statements are allowed, which means you can

have switch statements inside another switch block. However,

nested switch statements should be avoided as it makes the program more

complex and less readable.

Example of switch statement

#include<stdio.h>

void main()

{

 int a, b, c, choice;

 while(choice != 3)

•

57

 {

 /* Printing the available options */

 printf("\n 1. Press 1 for addition");

 printf("\n 2. Press 2 for subtraction");

 printf("\n Enter your choice");

 /* Taking users input */

 scanf("%d", &choice);

 switch(choice)

 {

 case 1:

 printf("Enter 2 numbers");

 scanf("%d%d", &a, &b);

 c = a + b;

 printf("%d", c);

 break;

 case 2:

 printf("Enter 2 numbers");

 scanf("%d%d", &a, &b);

•

58

 c = a - b;

 printf("%d", c);

 break;

 default:

 printf("you have passed a wrong key");

 printf("\n press any key to continue");

 }

 }

}

Difference between switch and if

 if statements can evaluate float conditions. switch statements cannot

evaluate floatconditions.

 if statement can evaluate relational operators. switch statement cannot evaluate

relational operators i.e they are not allowed in switch statement.

Looping Statements

•

59

Types of Loop

There are 3 types of Loop in C language, namely:

1. while loop

2. for loop

3. do while loop

while loop

while loop can be addressed as an entry control loop. It is completed in 3 steps.

 Variable initialization.(e.g int x = 0;)

 condition(e.g while(x <= 10))

 Variable increment or decrement (x++ or x-- or x = x + 2)

Syntax :

variable initialization;

while(condition)

{

 statements;

 variable increment or decrement;

}

•

60

Example: Program to print first 10 natural numbers

#include<stdio.h>

void main()

{

 int x;

 x = 1;

 while(x <= 10)

 {

 printf("%d\t", x);

 /* below statement means, do x = x+1, increment x by 1*/

 x++;

 }

}

1 2 3 4 5 6 7 8 9 10

•

61

for loop

for loop is used to execute a set of statements repeatedly until a particular condition

is satisfied. We can say it is an open ended loop.. General format is,

for(initialization; condition; increment/decrement)

{

 statement-block;

}

In for loop we have exactly two semicolons, one after initialization and second

after the condition. In this loop we can have more than one initialization or

increment/decrement, separated using comma operator. But it can have only

one condition.

The for loop is executed as follows:

1. It first evaluates the initialization code.

2. Then it checks the condition expression.

3. If it is true, it executes the for-loop body.

4. Then it evaluate the increment/decrement condition and again follows from step

2.

5. When the condition expression becomes false, it exits the loop.

•

62

Example: Program to print first 10 natural numbers

#include<stdio.h>

void main()

{

 int x;

 for(x = 1; x <= 10; x++)

 {

 printf("%d\t", x);

 }

}

1 2 3 4 5 6 7 8 9 10

Nested for loop

We can also have nested for loops, i.e one for loop inside another for loop.

Basic syntax is,

for(initialization; condition; increment/decrement)

{

•

63

 for(initialization; condition; increment/decrement)

 {

 statement ;

 }

}

Example: Program to print half Pyramid of numbers

#include<stdio.h>

void main()

{

 int i, j;

 /* first for loop */

 for(i = 1; i < 5; i++)

 {

 printf("\n");

 /* second for loop inside the first */

 for(j = i; j > 0; j--)

•

64

 {

 printf("%d", j);

 }

 }

}

1

21

321

4321

54321

do while loop

In some situations it is necessary to execute body of the loop before testing the

condition. Such situations can be handled with the help of do-

while loop. do statement evaluates the body of the loop first and at the end, the

condition is checked using while statement. It means that the body of the loop will

be executed at least once, even though the starting condition inside while is

initialized to be false. General syntax is,

•

65

do

{

}

while(condition)

Example: Program to print first 10 multiples of 5.

#include<stdio.h>

void main()

{

 int a, i;

 a = 5;

 i = 1;

 do

 {

 printf("%d\t", a*i);

 i++;

•

66

 }

 while(i <= 10);

}

5 10 15 20 25 30 35 40 45 50

Jumping Statements

Sometimes, while executing a loop, it becomes necessary to skip a part of the loop

or to leave the loop as soon as certain condition becomes true. This is known as

jumping out of loop.

1) break statement

When break statement is encountered inside a loop, the loop is immediately exited

and the program continues with the statement immediately following the loop.

•

67

2) continue statement

It causes the control to go directly to the test-condition and then continue the loop

process. On encountering continue, cursor leave the current cycle of loop, and

starts with the next cycle.

•

68

•

69

MODULE 2

Arrays in C

In C language, arrays are reffered to as structured data types. An array is defined

as finite ordered collection of homogenous data, stored in contiguous memory

locations. Arrays are used:

 to store list of Employee or Student names,

 to store marks of students,

 or to store list of numbers or characters etc.

Since arrays provide an easy way to represent data, it is classified amongst the data

structures in C.

Array can be used to represent not only simple list of data but also table of data in

two or three dimensions.

Declaring an Array

Like any other variable, arrays must be declared before they are used. General form

of array declaration is,

•

70

data-type variable-name[size];

/* Example of array declaration */

int arr[10];

Here int is the data type, arr is the name of the array and 10 is the size of array. It

means array arr can only contain 10 elements of int type.

Index of an array starts from 0 to size-1 i.e first element of arr array will be stored

at arr[0]address and the last element will occupy arr[9].

Initialization of an Array

After an array is declared it must be initialized. Otherwise, it will

contain garbage value(any random value). An array can be initialized at

either compile time or at runtime.

•

71

Compile time Array initialization

Compile time initialization of array elements is same as ordinary variable

initialization. The general form of initialization of array is,

data-type array-name[size] = { list of values };

/* Here are a few examples */

int marks[4]={ 67, 87, 56, 77 }; // integer array initialization

float area[5]={ 23.4, 6.8, 5.5 }; // float array initialization

int marks[4]={ 67, 87, 56, 77, 59 }; // Compile time error

One important thing to remember is that when you will give more initializer(array

elements) than the declared array size than the compiler will give an error.

#include<stdio.h>

void main()

{

 int i;

 int arr[] = {2, 3, 4}; // Compile time array initialization

 for(i = 0 ; i < 3 ; i++)

 {

•

72

 printf("%d\t",arr[i]);

 }

}

OUTPUT:

2 3 4

Runtime Array initialization

An array can also be initialized at runtime using scanf() function. This approach is

usually used for initializing large arrays, or to initialize arrays with user specified

values. Example,

#include<stdio.h>

void main()

{

 int arr[4];

 int i, j;

 printf("Enter array element");

 for(i = 0; i < 4; i++)

 {

 scanf("%d", &arr[i]); //Run time array initialization

•

73

 }

 for(j = 0; j < 4; j++)

 {

 printf("%d\n", arr[j]);

 }

}

Two dimensional Arrays

C language supports multidimensional arrays also. The simplest form of a

multidimensional array is the two-dimensional array. Both the row's and column's

index begins from 0.

Two-dimensional arrays are declared as follows,

data-type array-name[row-size][column-size]

/* Example */

int a[3][4];

•

74

An array can also be declared and initialized together. For example,

int arr[][3] = {

 {0,0,0},

 {1,1,1}

};

Runtime initialization of a two dimensional Array

#include<stdio.h>

void main()

{

•

75

 int arr[3][4];

 int i, j, k;

 printf("Enter array element");

 for(i = 0; i < 3;i++)

 {

 for(j = 0; j < 4; j++)

 {

 scanf("%d", &arr[i][j]);

 }

 }

 for(i = 0; i < 3; i++)

 {

 for(j = 0; j < 4; j++)

 {

 printf("%d", arr[i][j]);

 }

 }

}

String and Character Array

•

76

String is a sequence of characters that is treated as a single data item and terminated

by null character '\0'. Remember that C language does not support strings as a data

type.

A string is actually one-dimensional array of characters in C language. These are

often used to create meaningful and readable programs.

For example: The string "hello world" contains 12 characters including '\0' character

which is automatically added by the compiler at the end of the string.

Declaring and Initializing a string variables

There are different ways to initialize a character array variable.

char name[13] = "StudyTonight"; // valid character array initialization

char name[10] = {'L','e','s','s','o','n','s','\0'}; // valid initialization

Remember that when you initialize a character array by listing all of its characters

separately then you must supply the '\0' character explicitly.

Some examples of illegal initialization of character array are,

char ch[3] = "hell"; // Illegal

char str[4];

str = "hell"; // Illegal

•

77

String Input and Output

Input function scanf() can be used with %s format specifier to read a string input

from the terminal. But there is one problem with scanf() function, it terminates its

input on the first white space it encounters. Therefore if you try to read an input

string "Hello World" using scanf() function, it will only read Hello and terminate

after encountering white spaces.

However, C supports a format specification known as the edit set conversion code

%[..] that can be used to read a line containing a variety of characters, including

white spaces.

#include<stdio.h>

#include<string.h>

void main()

{

 char str[20];

 printf("Enter a string");

 scanf("%[^\n]", &str); //scanning the whole string, including the white spaces

 printf("%s", str);

•

78

}

Another method to read character string with white spaces from terminal is by using

the gets()function.

char text[20];

gets(text);

printf("%s", text);

String Handling Functions

C language supports a large number of string handling functions that can be used to

carry out many of the string manipulations. These functions are packaged

in string.h library. Hence, you must include string.h header file in your programs to

use these functions.

The following are the most commonly used string handling functions.

Method Description

strcat() It is used to concatenate(combine) two strings

strlen() It is used to show length of a string

strrev() It is used to show reverse of a string

•

79

strcpy() Copies one string into another

strcmp() It is used to compare two string

(i) strcat() function

strcat("hello", "world");

strcat() function will add the string "world" to "hello" i.e

it will ouput helloworld.

(ii) strlen() function

strlen() function will return the length of the string passed to it.

int j;

j = strlen("studytonight");

printf("%d",j);

OUTPUT:

12

(iii) strcmp() function

•

80

strcmp() function will return the ASCII difference between first

unmatching character of two strings.

int j;

j = strcmp("study", "tonight");

printf("%d",j);

 OUTPUT:

-1

(iv) strcpy() function

It copies the second string argument to the first string argument.

#include<stdio.h>

#include<string.h>

int main()

{

 char s1[50];

 char s2[50];

 strcpy(s1, "StudyTonight"); //copies "studytonight" to string s1

 strcpy(s2, s1); //copies string s1 to string s2

 printf("%s\n", s2);

•

81

 return(0);

}

OUTPUT:

StudyTonight

(v) strrev() function

It is used to reverse the given string expression.

#include<stdio.h>

int main()

{

 char s1[50];

 printf("Enter your string: ");

 gets(s1);

 printf("\nYour reverse string is: %s",strrev(s1));

 return(0);

}

OUTPUT:

Enter your string: studytonight

Your reverse string is: thginotyduts

•

82

Introduction to Structure

Structure is a user-defined datatype in C language which allows us to combine data

of different types together. Structure helps to construct a complex data type which

is more meaningful.

It is somewhat similar to an Array, but an array holds data of similar type only. But

structure on the other hand, can store data of any type, which is practical more useful.

For example: If I have to write a program to store Student information, which will

have Student's name, age, branch, permanent address, father's name etc, which

included string values, integer values etc, how can I use arrays for this problem, I

will require something which can hold data of different types together.

In structure, data is stored in form of records.

Defining a structure

struct keyword is used to define a structure. struct defines a new data type which is

a collection of primary and derived datatypes.

Syntax:

struct [structure_tag]

•

83

{

 //member variable 1

 //member variable 2

 //member variable 3

 ...

}[structure_variables];

As you can see in the syntax above, we start with the struct keyword, then it's

optional to provide your structure a name, we suggest you to give it a name, then

inside the curly braces, we have to mention all the member variables, which are

nothing but normal C language variables of different types like int, float, array etc.

After the closing curly brace, we can specify one or more structure variables, again

this is optional.

Note: The closing curly brace in the structure type declaration must be followed by

a semicolon(;).

Example of Structure

struct Student

{

 char name[25];

•

84

 int age;

 char branch[10];

 // F for female and M for male

 char gender;

};

Here struct Student declares a structure to hold the details of a student which consists

of 4 data fields, namely name, age, branch and gender. These fields are

called structure elements or members.

Each member can have different datatype, like in this case, name is an array

of char type and age is of int type etc. Student is the name of the structure and is

called as the structure tag.

Declaring Structure Variables

It is possible to declare variables of a structure, either along with structure definition

or after the structure is defined. Structure variable declaration is similar to the

declaration of any normal variable of any other datatype. Structure variables can be

declared in following two ways:

1) Declaring Structure variables separately

•

85

struct Student

{

 char name[25];

 int age;

 char branch[10];

 //F for female and M for male

 char gender;

};

struct Student S1, S2; //declaring variables of struct Student

2) Declaring Structure variables with structure definition

struct Student

{

 char name[25];

 int age;

 char branch[10];

•

86

 //F for female and M for male

 char gender;

}S1, S2;

Here S1 and S2 are variables of structure Student. However this approach is not

much recommended.

Accessing Structure Members

Structure members can be accessed and assigned values in a number of ways.

Structure members have no meaning individually without the structure. In order to

assign a value to any structure member, the member name must be linked with

the structure variable using a dot . operator also called period or member

access operator.

For example:

#include<stdio.h>

#include<string.h>

struct Student

{

 char name[25];

•

87

 int age;

 char branch[10];

 //F for female and M for male

 char gender;

};

int main()

{

 struct Student s1;

 /*

 s1 is a variable of Student type and

 age is a member of Student

 */

 s1.age = 18;

 /*

 using string function to add name

•

88

 */

 strcpy(s1.name, "Viraaj");

 /*

 displaying the stored values

 */

 printf("Name of Student 1: %s\n", s1.name);

 printf("Age of Student 1: %d\n", s1.age);

 return 0;

}

OUTPUT:

Name of Student 1: Viraaj

Age of Student 1: 18

We can also use scanf() to give values to structure members through terminal.

scanf(" %s ", s1.name);

scanf(" %d ", &s1.age);

•

89

Structure Initialization

Like a variable of any other datatype, structure variable can also be initialized at

compile time.

struct Patient

{

 float height;

 int weight;

 int age;

};

struct Patient p1 = { 180.75 , 73, 23 }; //initialization

or,

struct Patient p1;

p1.height = 180.75; //initialization of each member separately

p1.weight = 73;

p1.age = 23;

Array of Structure

We can also declare an array of structure variables. in which each element of the

array will represent a structure variable. Example : struct employee emp[5];

•

90

The below program defines an array emp of size 5. Each element of the array emp is

of type Employee.

#include<stdio.h>

struct Employee

{

 char ename[10];

 int sal;

};

struct Employee emp[5];

int i, j;

void ask()

{

 for(i = 0; i < 3; i++)

 {

 printf("\nEnter %dst Employee record:\n", i+1);

•

91

 printf("\nEmployee name:\t");

 scanf("%s", emp[i].ename);

 printf("\nEnter Salary:\t");

 scanf("%d", &emp[i].sal);

 }

 printf("\nDisplaying Employee record:\n");

 for(i = 0; i < 3; i++)

 {

 printf("\nEmployee name is %s", emp[i].ename);

 printf("\nSlary is %d", emp[i].sal);

 }

}

void main()

{

 ask();

}

•

92

Nested Structures

Nesting of structures, is also permitted in C language. Nested structures means, that

one structure has another stucture as member variable.

Example:

struct Student

{

 char[30] name;

 int age;

 /* here Address is a structure */

 struct Address

 {

 char[50] locality;

 char[50] city;

 int pincode;

 }addr;

};

•

93

Structure as Function Arguments

We can pass a structure as a function argument just like we pass any other variable

or an array as a function argument.

Example:

#include<stdio.h>

struct Student

{

 char name[10];

 int roll;

};

void show(struct Student st);

void main()

{

 struct Student std;

•

94

 printf("\nEnter Student record:\n");

 printf("\nStudent name:\t");

 scanf("%s", std.name);

 printf("\nEnter Student rollno.:\t");

 scanf("%d", &std.roll);

 show(std);

}

void show(struct Student st)

{

 printf("\nstudent name is %s", st.name);

 printf("\nroll is %d", st.roll);

}

Unions in C Language

•

95

Unions are conceptually similar to structures. The syntax to declare/define a union

is also similar to that of a structure.

 The only differences is in terms of storage. In structure each member has its own

storage location, whereas all members of union uses a single shared memory

location which is equal to the size of its largest data member.

This implies that

although a union may contain many members of different types, it cannot handle all

the members at the same time. A union is declared using the union keyword.

union item

{

 int m;

 float x;

 char c;

•

96

}It1;

This declares a variable It1 of type union item. This union contains three members

each with a different data type. However only one of them can be used at a time.

This is due to the fact that only one location is allocated for all the union variables,

irrespective of their size.

The compiler allocates the storage that is large enough to hold the largest variable

type in the union.

In the union declared above the member x requires 4 bytes which is largest amongst

the members for a 16-bit machine. Other members of union will share the same

memory address.

Accessing a Union Member

Syntax for accessing any union member is similar to accessing structure members,

union test

{

 int a;

 float b;

 char c;

}t;

•

97

t.a; //to access members of union t

t.b;

t.c;

Example

#include <stdio.h>

union im

{

 int a;

 float b;

 char ch;

};

int main()

{

 union item it;

 it.a = 12;

•

98

 it.b = 20.2;

 it.ch = 'z';

 printf("%d\n", it.a);

 printf("%f\n", it.b);

 printf("%c\n", it.ch);

 return 0;

}

OUTPUT:

-26426

20.1999

z

As you can see here, the values of a and b get corrupted and only variable c prints

the expected result. This is because in union, the memory is shared among different

data types. Hence, the only member whose value is currently stored will have the

memory.

•

99

In the above example, value of the variable c was stored at last, hence the value of

other variables is lost.

•

100

MODULE 3

Introduction to Pointers

 A Pointer in C language is a variable which holds the address of another

variable of same data type.

 Pointers are used to access memory and manipulate the address.

 Pointers are one of the most distinct and exciting features of C language. It

provides power and flexibility to the language.

 Whenever a variable is defined in C language, a memory location is assigned

for it, in which its value will be stored. We can easily check this memory

address, using the & symbol.

 If var is the name of the variable, then &var will give it's address.

#include<stdio.h>

void main()

{

 int var = 7;

 printf("Value of the variable var is: %d\n", var);

 printf("Memory address of the variable var is: %x\n", &var);

}

OUTPUT:

•

101

Value of the variable var is: 7

Memory address of the variable var is: bcc7a00

Concept of Pointers

 Whenever a variable is declared in a program, system allocates a location i.e

an address to that variable in the memory, to hold the assigned value.

 This location has its own address number, which we just saw above.

 Let us assume that system has allocated memory location 80F for a variable a.

int a = 10;

 We can access the value 10 either by using the variable name a or by using its

address 80F.

 The variables which are used to hold memory addresses are called Pointer

variables.

 A pointer variable is therefore nothing but a variable which holds an address

of some other variable.

 And the value of a pointer variable gets stored in another memory location.

•

102

Benefits of using pointers

a) Pointers are more efficient in handling Arrays and Structures.

b) Pointers allow references to function and thereby helps in passing of function

as arguments to other functions.

c) It reduces length of the program and its execution time as well.

d) It allows C language to support Dynamic Memory management.

Dynamic Memory Allocation

 Dynamic Memory Allocation can be defined as a procedure in which the size

of a data structure (like Array) is changed during the runtime.

 C provides some functions to achieve these tasks. There are 4 library functions

provided by C defined under <stdlib.h> header file to facilitate dynamic

memory allocation in C programming. They are:

•

103

1. malloc(): “malloc” or “memory allocation” method is used to dynamically

allocate a single large block of memory with the specified size.

2. calloc():“calloc” or “contiguous allocation” method is used to

dynamically allocate the specified number of blocks of memory of the

specified type

3. free():“free” method is used to dynamically de-allocate the memory. The

memory allocated using functions malloc() and calloc() are not de-allocated

on their own.

4. realloc():“realloc” or “re-allocation” method is used to dynamically

change the memory allocation of a previously allocated memory.

Declaring, Initializing and using a pointer variable

Declaration of Pointer variable

 General syntax of pointer declaration is,

datatype *pointer_name;

 Data type of a pointer must be same as the data type of the variable to which

the pointer variable is pointing.

 void type pointer works with all data types, but is not often used.

 Here are a few examples:

int *ip; // pointer to integer variable

•

104

float *fp; // pointer to float variable

double *dp; // pointer to double variable

char *cp; // pointer to char variable

Initialization of Pointer variable

 Pointer Initialization is the process of assigning address of a variable to

a pointer variable.

 Pointer variable can only contain address of a variable of the same data type.

 In C language address operator & is used to determine the address of a

variable.

 The & (immediately preceding a variable name) returns the address of the

variable associated with it.

#include<stdio.h>

void main()

{

 int a = 10;

 int *ptr; //pointer declaration

 ptr = &a; //pointer initialization

}

•

105

 Pointer variables always point to variables of same data-type. Let's have an

example to showcase this:

#include<stdio.h>

void main()

{

 float a;

 int *ptr;

 ptr = &a; // ERROR, type mismatch

}

 If you are not sure about which variable's address to assign to a pointer

variable while declaration, it is recommended to assign a NULL value to your

pointer variable.

 A pointer which is assigned a NULLvalue is called a NULL pointer.

#include <stdio.h>

int main()

{

 int *ptr = NULL;

•

106

 return 0;

}

Using the pointer or Dereferencing of Pointer

Once a pointer has been assigned the address of a variable, to access the value of

the variable, pointer is dereferenced, using the indirection

operator or dereferencing operator *.

#include <stdio.h>

int main()

{

 int a, *p; // declaring the variable and pointer

 a = 10;

 p = &a; // initializing the pointer

 printf("%d", *p); //this will print the value of 'a'

 printf("%d", *&a); //this will also print the value of 'a'

 printf("%u", &a); //this will print the address of 'a'

 printf("%u", p); //this will also print the address of 'a'

 printf("%u", &p); //this will print the address of 'p’

 return 0;

}

•

107

Points to remember while using pointers:

a) While declaring/initializing the pointer variable, * indicates that the variable

is a pointer.

b) The address of any variable is given by preceding the variable name with

Ampersand &.

c) The pointer variable stores the address of a variable. The declaration int

*a doesn't mean that a is going to contain an integer value. It means that a is

going to contain the address of a variable storing integer value.

d) To access the value of a certain address stored by a pointer variable, * is used.

Here, the * can be read as 'value at'.

Example

#include <stdio.h>

int main()

{

 int i = 10; // normal integer variable storing value 10

 int *a; // since '*' is used, hence its a pointer variable

 /*

 '&' returns the address of the variable 'i'

 which is stored in the pointer variable 'a'

 */

•

108

 a = &i;

 /*

 below, address of variable 'i', which is stored

 by a pointer variable 'a' is displayed

 */

 printf("Address of variable i is %u\n", a);

 /*

 below, '*a' is read as 'value at a'

 which is 10

 */

 printf("Value at the address, which is stored by pointer variable

 a is %d\n", *a);

 return 0;

}

OUTPUT:

Address of variable i is 2686728 (The address may vary)

Value at an address, which is stored by pointer variable a is 10

Pointer to a Pointer (Double Pointer)

•

109

 Pointers are used to store the address of other variables of similar data-type.

But if you want to store the address of a pointer variable, then you again need

a pointer to store it.

 Thus, when one pointer variable stores the address of another pointer variable,

it is known as Pointer to Pointer variable or Double Pointer.

Syntax:

int **p1;

 Here, we have used two indirection operator(*) which stores and points to

the address of a pointer variable i.e, int *.

 If we want to store the address of this (double pointer) variable p1, then the

syntax would become:

int ***p2

Simple program to represent Pointer to a Pointer

#include <stdio.h>

int main() {

 int a = 10;

 int *p1; //this can store the address of variable a

 int **p2;

 /*

 this can store the address of pointer variable p1 only.

 It cannot store the address of variable 'a'

•

110

 */

 p1 = &a;

 p2 = &p1;

 printf("Address of a = %u\n", &a);

 printf("Address of p1 = %u\n", &p1);

 printf("Address of p2 = %u\n\n", &p2);

// below print statement will give the address of 'a'

 printf("Value at the address stored by p2 = %u\n", *p2);

 printf("Value at the address stored by p1 = %d\n\n", *p1);

 printf("Value of **p2 = %d\n", **p2); //read this *(*p2)

 /*

 This is not allowed, it will give a compile time error-

 p2 = &a;

 printf("%u", p2);

 */

 return 0;

}

OUTPUT:

Address of a = 2686724

Address of p1 = 2686728

•

111

Address of p2 = 2686732

Value at the address stored by p2 = 2686724

Value at the address stored by p1 = 10

Value of **p2 = 10

Explanation of the above program:

 p1 pointer variable can only hold the address of the variable a (i.e Number of

indirection operator(*)-1 variable). Similarly, p2 variable can only hold the

address of variable p1. It cannot hold the address of variable a.

 *p2 gives us the value at an address stored by the p2 pointer. p2 stores the

address of p1pointer and value at the address of p1 is the address of variable a.

Thus, *p2 prints address of a.

 **p2 can be read as *(*p2). Hence, it gives us the value stored at the

address *p2. From above statement, you know *p2 means the address of

variable a. Hence, the value at the address *p2 is 10. Thus, **p2 prints 10.

Pointer and Arrays

•

112

 When an array is declared, compiler allocates sufficient amount of memory to

contain all the elements of the array. Base address i.e address of the first

element of the array is also allocated by the compiler.

Suppose we declare an array arr,

int arr[5] = { 1, 2, 3, 4, 5 };

 Assuming that the base address of arr is 1000 and each integer requires two

bytes, the five elements will be stored as follows:

 Here

variable arr will give the base address, which is a constant pointer pointing to

the first element of the array, arr[0]. Hence arr contains the address

of arr[0] i.e 1000.

 In short, arr has two purpose - it is the name of the array and it acts as a pointer

pointing towards the first element in the array.

arr is equal to &arr[0] by default

 We can also declare a pointer of type int to point to the array arr.

int *p;

•

113

p = arr;

// or,

p = &arr[0]; //both the statements are equivalent.

 Now we can access every element of the array arr using p++ to move from

one element to another.

Pointer to Array

 As studied above, we can use a pointer to point to an array, and then we can

use that pointer to access the array elements. Lets have an example,

#include <stdio.h>

int main()

{

 int i;

 int a[5] = {1, 2, 3, 4, 5};

 int *p = a; // same as int*p = &a[0]

 for (i = 0; i < 5; i++)

 {

 printf("%d", *p);

 p++;

 }

•

114

 return 0;

}

 In the above program, the pointer *p will print all the values stored in the

array one by one. We can also use the Base address (a in above case) to act

as a pointer and print all the values.

 The generalized form for using pointer with an array,

*(a+i)

•

115

is same as:

a[i]

Pointer to Multidimensional Array

 A multidimensional array is of form, a[i][j]. Lets see how we can make a

pointer point to such an array. As we know now, name of the array gives its

base address.

 In a[i][j], a will give the base address of this array, even a + 0 + 0 will also

give the base address, that is the address of a[0][0]element.

 Here is the generalized form for using pointer with multidimensional arrays.

((a + i) + j)

which is same as,

a[i][j]

Pointer and Character strings

 Pointer can also be used to create strings. Pointer variables of char type are

treated as string.

char *str = "Hello";

 The above code creates a string and stores its address in the pointer

variable str.

 The pointer str now points to the first character of the string "Hello".

•

116

 Another important thing to note here is that the string created

using char pointer can be assigned a value at runtime.

char *str;

str = "hello"; //this is Legal

 The content of the string can be printed using printf() and puts().

printf("%s", str);

puts(str);

 Notice that str is pointer to the string, it is also name of the string. Therefore

we do not need to use indirection operator *.

Array of Pointers

 We can also have array of pointers. Pointers are very helpful in handling

character array with rows of varying length.

char *name[3] = {

 "Adam",

 "chris",

 "Deniel"

 };

//Now lets see same array without using pointer

char name[3][20] = {

•

117

 "Adam",

 "chris",

 "Deniel"

};

 In the second approach memory wastage is more, hence it is prefered to use

pointer in such cases.

 When we say memory wastage, it doesn't means that the strings will start

occupying less space, no, characters will take the same space, but when we

define array of characters, a contiguous memory space is located equal to the

•

118

maximum size of the array, which is a wastage, which can be avoided if we

use pointers instead.

PROGRAMS WITH POINTERS

Program to access elements of an array using pointers:

#include<stdio.h>

#include<conio.h>

#define MAX 30

void main() {

 int size, i, arr[MAX];

 int *ptr;

 clrscr();

 ptr = &arr[0];

 printf("\nEnter the size of array : ");

 scanf("%d", &size);

 printf("\nEnter %d integers into array: ", size);

 for (i = 0; i < size; i++) {

 scanf("%d", ptr);

•

119

 ptr++;

 }

 printf("\nElements of array are :");

 for (i = 0; i <size; i++) {

 printf("\nElement%d is %d : ", i, *ptr);

 ptr--;

 }

 getch();

}

Program to access elements of an array in reverse order using pointers:

#include<stdio.h>

#include<conio.h>

#define MAX 30

void main() {

 int size, i, arr[MAX];

 int *ptr;

 clrscr();

 ptr = &arr[0];

 printf("\nEnter the size of array : ");

 scanf("%d", &size);

 printf("\nEnter %d integers into array: ", size);

 for (i = 0; i < size; i++) {

 scanf("%d", ptr);

•

120

 ptr++;

 }

 ptr = &arr[size - 1];

 printf("\nElements of array in reverse order are :");

 for (i = size - 1; i >= 0; i--) {

 printf("\nElement%d is %d : ", i, *ptr);

 ptr--;

 }

 getch();

}

Program to sort elements of an array using pointers:

#include <stdio.h>

void main()

{

 int *a,i,j,tmp,n;

 printf("\n\n Pointer : Sort an array using pointer :\n");

 printf("--\n");

 printf(" Input the number of elements to store in the array : ");

 scanf("%d",&n);

 printf(" Input %d number of elements in the array : \n",n);

 for(i=0;i<n;i++)

•

121

 {

 printf(" element - %d : ",i+1);

 scanf("%d",a+i);

 }

 for(i=0;i<n;i++)

 {

 for(j=i+1;j<n;j++)

 {

 if(*(a+i) > *(a+j))

 {

 tmp = *(a+i);

 *(a+i) = *(a+j);

 *(a+j) = tmp;

 }

 }

 }

 printf("\n The elements in the array after sorting : \n");

 for(i=0;i<n;i++)

 {

 printf(" element - %d : %d \n",i+1,*(a+i));

 }

printf("\n");

}

Program to compute sum of the array elements using pointers:

#include<stdio.h>

#include<conio.h>

void main() {

 int arr[10];

•

122

 int i, sum = 0;

 int *ptr;

 printf("\nEnter 10 elements : ");

 for (i = 0; i < 10; i++)

 scanf("%d", &arr[i]);

 ptr = arr; /* a=&a[0] */

 for (i = 0; i < 10; i++) {

 sum = sum + *ptr;

 ptr++;

 }

 printf("The sum of array elements : %d", sum);

}

 Program to store information and display it using structure:

#include <stdio.h>

struct student

{

•

123

 char name[50];

 int roll;

 float marks;

} s;

int main()

{

 printf("Enter information:\n");

 printf("Enter name: ");

 scanf("%s", s.name);

 printf("Enter roll number: ");

 scanf("%d", &s.roll);

 printf("Enter marks: ");

 scanf("%f", &s.marks);

 printf("Displaying Information:\n");

 printf("Name: ");

 puts(s.name);

 printf("Roll number: %d\n",s.roll);

printf("Marks: %.1f\n", s.marks);

•

124

return 0;

}

Program to add two numbers using pointers:

#include<stdio.h>

int main() {

 int *ptr1, *ptr2;

 int num;

 printf("\nEnter two numbers : ");

 scanf("%d %d", ptr1, ptr2);

 num = *ptr1 + *ptr2;

 printf("Sum = %d", num);

 return (0);

}

Program to swap two numbers using pointers:

#include <stdio.h>

int main()

{

 int x, y, *a, *b, temp;

•

125

 printf("Enter the value of x and y\n");

 scanf("%d%d", &x, &y);

 printf("Before Swapping\nx = %d\ny = %d\n", x, y);

 a = &x;

 b = &y;

 temp = *b;

 *b = *a;

 *a = temp;

 printf("After Swapping\nx = %d\ny = %d\n", x, y);

 return 0;

}

Program to concatenate two strings using pointers:

#include <stdio.h>

int main()

{

 char aa[100], bb[100];

 printf("\nEnter the first string: ");

 gets(aa); // inputting first string

 printf("\nEnter the second string to be concatenated: ");

 gets(bb); // inputting second string

•

126

 char *a = aa;

 char *b = bb;

 // pointing to the end of the 1st string

 while(*a) // till it doesn't point to NULL-till string is not empty

 {

 a++; // point to the next letter of the string

 }

 while(*b) // till second string is not empty

 {

 *a = *b;

 b++;

 a++;

 }

 *a = '\0'; // string must end with '\0'

 printf("\n\n\nThe string after concatenation is: %s ", aa);

 return 0;

}

Program to compare two strings using pointers:

#include<stdio.h>

int main()

{

 char string1[50],string2[50],*str1,*str2;

 int i,equal = 0;

•

127

 printf("Enter The First String: ");

 scanf("%s",string1);

 printf("Enter The Second String: ");

 scanf("%s",string2);

 str1 = string1;

 str2 = string2;

 while(*str1 == *str2)

 {

 if (*str1 == '\0' || *str2 == '\0')

 break;

 str1++;

 str2++;

 }

 if(*str1 == '\0' && *str2 == '\0')

 printf("\n\nBoth Strings Are Equal.");

 else

 printf("\n\nBoth Strings Are Not Equal.");

}

Program to copy a string to another string using pointers:

•

128

#include<stdio.h>

void main()

{

 char*str1="Hello world";

 char str2[30];

 clrscr();

 while(*str1!='\0')

 *str2++=*str1++;

 *str2='\0';

 printf("\n %s",str2);

 getch();

 }

Program to find the length of a string using pointers:

#include<stdio.h>

int main() {

 char str[20], *pt;

 int i = 0;

 printf("Pointer Example Program : Find or Calculate Length of String \n");

 printf("Enter Any string [below 20 chars] : ");

 gets(str);

 pt = str;

 while (*pt != '\0') {

 i++;

•

129

 pt++;

 }

 printf("Length of String : %d", i);

 return 0;

}

•

130

MODULE 4

Functions in C

 A function is a block of code that performs a particular task.

 There are many situations where we might need to write same line of code for

more than once in a program.

 This may lead to unnecessary repetition of code, bugs and even becomes

boring for the programmer.

 So, C language provides an approach in which you can declare and define a

group of statements once in the form of a function and it can be called and

used whenever required.

 These functions defined by the user are also known as User-defined Functions

 C functions can be classified into two categories,

Library functions

User-defined functions

•

131

 Library functions are those functions which are already defined in C library,

example printf(), scanf(), strcat() etc. You just need to include appropriate

header files to use these functions. These are already declared and defined in

C libraries.

 A User-defined functions on the other hand, are those functions which are

defined by the user at the time of writing program. These functions are made

for code reusability and for saving time and space.

Benefits of Using Functions

 It provides modularity to your program's structure.

 It makes your code reusable. You just have to call the function by its name to

use it, wherever required.

•

132

 In case of large programs with thousands of code lines, debugging and editing

becomes easier if you use functions.

 It makes the program more readable and easy to understand.

Function Declaration

 General syntax for function declaration is,

returntype functionName(type1 parameter1, type2 parameter2,...);

 Like any variable or an array, a function must also be declared before it’s used.

 Function declaration informs the compiler about the function name,

parameters is accept, and its return type.

 The actual body of the function can be defined separately. It's also called

as Function Prototyping.

 Function declaration consists of 4 parts.

returntype

function name

parameter list

terminating semicolon

returntype

•

133

 When a function is declared to perform some sort of calculation or any

operation and is expected to provide with some result at the end, in such cases,

a return statement is added at the end of function body.

 Return type specifies the type of value (int, float, char, double) that function

is expected to return to the program which called the function.

Note: In case your function doesn't return any value, the return type would be void.

functionName

 Function name is an identifier and it specifies the name of the function.

 The function name is any valid C identifier and therefore must follow the same

naming rules like other variables in C language.

parameter list

 The parameter list declares the type and number of arguments that the function

expects when it is called.

 Also, the parameters in the parameter list receives the argument values when

the function is called. They are often referred as formal parameters.

Example

Let's write a simple program with a main() function, and a user defined function to

multiply two numbers, which will be called from the main() function.

#include<stdio.h>

•

134

int multiply(int a, int b); // function declaration

int main()

{

 int i, j, result;

 printf("Please enter 2 numbers you want to multiply...");

 scanf("%d%d", &i, &j);

 result = multiply(i, j); // function call

 printf("The result of muliplication is: %d", result);

 return 0;

}

int multiply(int a, int b)

{

 return (a*b); // function defintion, this can be done in one line

}

•

135

Function definition Syntax

 Just like in the example above, the general syntax of function definition is,

returntype functionName(type1 parameter1, type2 parameter2,...)

{

 // function body goes here

}

 The first line returntype functionName(type1 parameter1, type2

parameter2,...) is known as function header and the statement(s) within curly

braces is called function body.

functionbody

 The function body contains the declarations and the statements(algorithm)

necessary for performing the required task.

 The body is enclosed within curly braces { ... } and consists of three parts.

(a) Local variable declaration (if required).

(b) Function statements to perform the task inside the function.

(c) A return statement to return the result evaluated by the function (if

return type is void, then no return statement is required).

•

136

Calling a function

 When a function is called, control of the program gets transferred to the

function.

functionName(argument1, argument2,...);

Passing Arguments to a function

 Arguments are the values specified during the function call, for which the

formal parameters are declared while defining the function.

 It is possible to have a function with parameters but no return type. It is not

necessary, that if a function accepts parameter(s), it must return a result too.

•

137

 While declaring the function, we have declared two parameters a and b of

type int. Therefore, while calling that function, we need to pass two

arguments, else we will get compilation error.

 And the two arguments passed should be received in the function definition,

which means that the function header in the function definition should have

the two parameters to hold the argument values. T

 These received arguments are also known as formal parameters. The name of

the variables while declaring, calling and defining a function can be different.

Returning a value from function

 A function may or may not return a result. But if it does, we must use

the return statement to output the result. return statement also ends the

function execution, hence it must be the last statement of any function.

 If you write any statement after the return statement, it won't be executed.

•

138

 The

datatype

of the

value

returned

using

the return statement should be same as the return type mentioned at function

•

139

declaration and definition. If any of it mismatches, you will get compilation

error.

Type of User-defined Functions in C

 There can be 4 different types of user-defined functions, they are:

Function with no arguments and no return value

Function with no arguments and a return value

Function with arguments and no return value

Function with arguments and a return value

Function with no arguments and no return value

 Such functions can either be used to display information or they are

completely dependent on user inputs.

 Below is an example of a function, which takes 2 numbers as input from user,

and display which is the greater number.

#include<stdio.h>

void greatNum(); // function declaration

int main()

{

 greatNum(); // function call

•

140

 return 0;

}

void greatNum() // function definition

{

 int i, j;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 if(i > j) {

 printf("The greater number is: %d", i);

 }

 else {

 printf("The greater number is: %d", j);

 }

}

Function with no arguments and a return value

 We have modified the above example to make the function greatNum() return

the number which is greater amongst the 2 input numbers.

#include<stdio.h>

•

141

int greatNum(); // function declaration

int main()

{

 int result;

 result = greatNum(); // function call

 printf("The greater number is: %d", result);

 return 0;

}

int greatNum() // function definition

{

 int i, j, greaterNum;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 if(i > j) {

 greaterNum = i;

 }

 else {

 greaterNum = j;

 }

•

142

 // returning the result

 return greaterNum;

}

Function with arguments and no return value

 This time, we have modified the above example to make the

function greatNum() take two int values as arguments, but it will not be

returning anything.

#include<stdio.h>

void greatNum(int a, int b); // function declaration

int main()

{

 int i, j;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

 greatNum(i, j); // function call

 return 0;

}

•

143

void greatNum(int x, int y) // function definition

{

 if(x > y) {

 printf("The greater number is: %d", x);

 }

 else {

 printf("The greater number is: %d", y);

 }

}

Function with arguments and a return value

 This is the best type, as this makes the function completely independent of

inputs and outputs, and only the logic is defined inside the function body.

#include<stdio.h>

int greatNum(int a, int b); // function declaration

int main()

{

 int i, j, result;

 printf("Enter 2 numbers that you want to compare...");

 scanf("%d%d", &i, &j);

•

144

 result = greatNum(i, j); // function call

 printf("The greater number is: %d", result);

 return 0;

}

int greatNum(int x, int y) // function definition

{

 if(x > y) {

 return x;

 }

 else {

 return y;

 }

}

Nesting of Functions

 C language also allows nesting of functions i.e to use/call one function inside

another function's body.

function1()

{

•

145

 // function1 body here

 function2();

 // function1 body here }

 If function2() also has a call for function1() inside it, then in that case, it will

lead to an infinite nesting. They will keep calling each other and the program

will never terminate.

What is Recursion?

 Recursion is a special way of nesting functions, where a function calls itself

inside it.

 We must have certain conditions in the function to break out of the recursion,

otherwise recursion will occur infinite times.

function1()

{

 // function1 body

 function1();

 // function1 body

}

Example: Factorial of a number using Recursion

•

146

#include<stdio.h>

int factorial(int x); //declaring the function

void main()

{

 int a, b;

 printf("Enter a number...");

 scanf("%d", &a);

 b = factorial(a); //calling the function named factorial

 printf("%d", b);

}

int factorial(int x) //defining the function

{

 int r = 1;

 if(x == 1)

 return 1;

 else

 r = x*factorial(x-1); //recursion, since the function calls itself

 return r;

•

147

}

Types of Function calls in C

 In functions with arguments, we can call a function in two different ways,

based on how we specify the arguments, and these two ways are:

Call by Value

Call by Reference

Call by Value

 Calling a function by value means, we pass the values of the arguments which

are stored or copied into the formal parameters of the function.

 Hence, the original values are unchanged only the parameters inside the

function changes.

#include<stdio.h>

void calc(int x);

int main()

{

 int x = 10;

 calc(x);

•

148

 // this will print the value of 'x'

 printf("\nvalue of x in main is %d", x);

 return 0;

}

void calc(int x)

{

 // changing the value of 'x'

 x = x + 10 ;

 printf("value of x in calc function is %d ", x);

}

OUTPUT:

value of x in calc function is 20

value of x in main is 10

 In this case, the actual variable x is not changed. This is because we are

passing the argument by value, hence a copy of x is passed to the function,

which is updated during function execution, and that copied value in the

function is destroyed when the function ends(goes out of scope).

 So the variable x inside the main() function is never changed and hence, still

holds a value of 10.

•

149

 But we can change this program to let the function modify the

original x variable, by making the function calc() return a value, and storing

that value in x.

#include<stdio.h>

int calc(int x);

int main()

{

 int x = 10;

 x = calc(x);

 printf("value of x is %d", x);

 return 0;

}

int calc(int x)

{

 x = x + 10 ;

 return x;

}

•

150

OUTPUT:

value of x is 20

Call by Reference

 In call by reference we pass the address (reference) of a variable as argument

to any function.

 When we pass the address of any variable as argument, then the function will

have access to our variable, as it now knows where it is stored and hence can

easily update its value.

 In this case the formal parameter can be taken as a reference or a pointer(don't

worry about pointers, we will soon learn about them), in both the cases they

will change the values of the original variable.

#include<stdio.h>

void calc(int *p); // functin taking pointer as argument

int main()

{

 int x = 10;

 calc(&x); // passing address of 'x' as argument

 printf("value of x is %d", x);

 return(0);

•

151

}

void calc(int *p) //receiving the address in a reference pointer variable

{

 /*

 changing the value directly that is

 stored at the address passed

 */

 *p = *p + 10;

}

OUTPUT:

value of x is 20

Pointers as Function Argument

 Pointer as a function parameter is used to hold addresses of arguments passed

during function call. This is also known as call by reference.

 When a function is called by reference any change made to the reference

variable will affect the original variable.

•

152

Example: Swapping two numbers using Pointer

#include <stdio.h>

void swap(int *a, int *b);

int main()

{

 int m = 10, n = 20;

 printf("m = %d\n", m);

 printf("n = %d\n\n", n);

 swap(&m, &n); //passing address of m and n to the swap function

 printf("After Swapping:\n\n");

 printf("m = %d\n", m);

 printf("n = %d", n);

 return 0;

}

/*

 pointer 'a' and 'b' holds and

 points to the address of 'm' and 'n'

*/

•

153

void swap(int *a, int *b)

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

}

OUTPUT:

m = 10

n = 20

After Swapping:

m = 20

n = 10

Functions returning Pointer variables

 A function can also return a pointer to the calling function. In this case you

must be careful, because local variables of function doesn't live outside the

function.

•

154

 They have scope only inside the function. Hence if you return a pointer

connected to a local variable, that pointer will be pointing to nothing when the

function ends.

#include <stdio.h>

int* larger(int*, int*);

void main()

{

 int a = 15;

 int b = 92;

 int *p;

 p = larger(&a, &b);

 printf("%d is larger",*p);

}

int* larger(int *x, int *y)

{

 if(*x > *y)

 return x;

 else

 return y;

}

•

155

OUTPUT:

92 is larger

Pointer to functions

 It is possible to declare a pointer pointing to a function which can then be used

as an argument in another function. A pointer to a function is declared as

follows,

type (*pointer-name)(parameter);

Here is an example :

int (*sum)(); //legal declaration of pointer to function

int *sum(); //This is not a declaration of pointer to function

 A function pointer can point to a specific function when it is assigned the

name of that function.

int sum(int, int);

int (*s)(int, int);

s = sum;

 Here s is a pointer to a function sum. Now sum can be called using function

pointer s along with providing the required argument values.

•

156

s (10, 20);

Example of Pointer to Function

#include <stdio.h>

int sum(int x, int y)

{

 return x+y;

}

int main()

{

 int (*fp)(int, int);

 fp = sum;

 int s = fp(10, 15);

 printf("Sum is %d", s);

 return 0;

}

OUTPUT:

25

•

157

MODULE 5

SORTING AND SEARCHING ALGORITHMS

Introduction to Sorting

 Sorting is nothing but arranging the data in ascending or descending order.

 Sorting arranges data in a sequence which makes searching easier.

Sorting Efficiency

 The two main criteria to judge which algorithm is better than the other have

been:

a) Time taken to sort the given data.

b) Memory Space required to do so.

Bubble Sort Algorithm

 Bubble Sort is a simple algorithm which is used to sort a given set of n

elements provided in form of an array with n number of elements.

 Bubble Sort compares all the element one by one and sort them based on their

values.

 If the given array has to be sorted in ascending order, then bubble sort will

start by comparing the first element of the array with the second element, if

•

158

the first element is greater than the second element, it will swap both the

elements, and then move on to compare the second and the third element, and

so on.

 If we have total n elements, then we need to repeat this process for n-1 times.

 It is known as bubble sort, because with every complete iteration the largest

element in the given array, bubbles up towards the last place or the highest

index, just like a water bubble rises up to the water surface.

 Sorting takes place by stepping through all the elements one-by-one and

comparing it with the adjacent element and swapping them if required.

Implementing Bubble Sort Algorithm

Following are the steps involved in bubble sort (for sorting a given array in

ascending order):

a) Starting with the first element (index = 0), compare the current element with

the next element of the array.

b) If the current element is greater than the next element of the array, swap them.

c) If the current element is less than the next element, move to the next

element. Repeat Step 1.

Let's consider an array with values {5, 1, 6, 2, 4, 3}

Below, we have a pictorial representation of how bubble sort will sort the given

array.

•

159

•

160

So as we can see in the representation above, after the first iteration, 6 is placed at

the last index, which is the correct position for it.

Similarly after the second iteration, 5 will be at the second last index, and so on.

// below we have a simple C program for bubble sort

#include <stdio.h>

void bubbleSort(int arr[], int n)

{

 int i, j, temp;

 for(i = 0; i < n; i++)

 {

 for(j = 0; j < n-i-1; j++)

 {

 if(arr[j] > arr[j+1])

 {

 // swap the elements

 temp = arr[j];

 arr[j] = arr[j+1];

 arr[j+1] = temp;

•

161

 }

 }

 }

 // print the sorted array

 printf("Sorted Array: ");

 for(i = 0; i < n; i++)

 {

 printf("%d ", arr[i]);

 }

}

int main()

{

 int arr[100], i, n, step, temp;

 // ask user for number of elements to be sorted

 printf("Enter the number of elements to be sorted: ");

 scanf("%d", &n);

 // input elements if the array

 for(i = 0; i < n; i++)

 {

•

162

 printf("Enter element no. %d: ", i+1);

 scanf("%d", &arr[i]);

 }

 // call the function bubbleSort

 bubbleSort(arr, n);

 return 0;

}

Although the above logic will sort an unsorted array, still the above algorithm is not

efficient because as per the above logic, the outer for loop will keep on executing

for 6 iterations even if the array gets sorted after the second iteration.

Optimized Bubble Sort Algorithm

 To optimize our bubble sort algorithm, we can introduce a flag to monitor

whether elements are getting swapped inside the inner for loop.

 Hence, in the inner for loop, we check whether swapping of elements is taking

place or not, everytime.

 If for a particular iteration, no swapping took place, it means the array has

been sorted and we can jump out of the for loop, instead of executing all the

iterations.

Let's consider an array with values {11, 17, 18, 26, 23}

•

163

Below, we have a pictorial representation of how the optimized bubble sort will sort

the given array.

 As we can see, in the first iteration, swapping took place, hence we updated

our flag value to 1, as a result, the execution enters the for loop again.

 But in the second iteration, no swapping will occur, hence the value of flag

will remain 0, and execution will break out of loop.

// below we have a simple C program for bubble sort

•

164

#include <stdio.h>

void bubbleSort(int arr[], int n)

{

 int i, j, temp;

 for(i = 0; i < n; i++)

 {

 for(j = 0; j < n-i-1; j++)

 {

 // introducing a flag to monitor swapping

 int flag = 0;

 if(arr[j] > arr[j+1])

 {

 // swap the elements

 temp = arr[j];

 arr[j] = arr[j+1];

 arr[j+1] = temp;

 // if swapping happens update flag to 1

 flag = 1;

 }

 }

•

165

 // if value of flag is zero after all the iterations of inner loop

 // then break out

 if(!flag)

 {

 break;

 }

 }

 // print the sorted array

 printf("Sorted Array: ");

 for(i = 0; i < n; i++)

 {

 printf("%d ", arr[i]);

 }

}

int main()

{

 int arr[100], i, n, step, temp;

 // ask user for number of elements to be sorted

•

166

 printf("Enter the number of elements to be sorted: ");

 scanf("%d", &n);

 // input elements if the array

 for(i = 0; i < n; i++)

 {

 printf("Enter element no. %d: ", i+1);

 scanf("%d", &arr[i]);

 }

 // call the function bubbleSort

 bubbleSort(arr, n);

 return 0;

}

In the above code, in the function bubbleSort, if for a single complete cycle of j

iteration(inner for loop), no swapping takes place, then flag will remain 0 and then

we will break out of the for loops, because the array has already been sorted.

Selection Sort Algorithm

 Selection sort is conceptually the simplest sorting algorithm.

 This algorithm will first find the smallest element in the array and swap it

with the element in the first position, then it will find the second

smallest element and swap it with the element in the second position, and it

will keep on doing this until the entire array is sorted.

•

167

 It is called selection sort because it repeatedly selects the next-smallest

element and swaps it into the right place.

How Selection Sort Works?

Following are the steps involved in selection sort (for sorting a given array in

ascending order):

1. Starting from the first element, we search the smallest element in the array, and

replace it with the element in the first position.

2. We then move on to the second position, and look for smallest element present

in the subarray, starting from index 1, till the last index.

3. We replace the element at the second position in the original array, or we can say

at the first position in the subarray, with the second smallest element.

4. This is repeated, until the array is completely sorted.

Let's consider an array with values {3,6,1,8,4,5}

•

168

Below, we have a pictorial representation of how selection sort will sort the given

array.

 In the first pass, the smallest element will be 1, so it will be placed at the first

position.

 Then leaving the first element, next smallest element will be searched, from

the remaining elements. We will get 3 as the smallest, so it will be then placed

at the second position.

 Then leaving 1 and 3 (because they are at the correct position), we will search

for the next smallest element from the rest of the elements and put it at third

position and keep doing this until array is sorted.

•

169

Finding Smallest Element in a subarray

 In selection sort, in the first step, we look for the smallest element in the array

and replace it with the element at the first position.

 Consider that you have an array with following values {3, 6, 1, 8, 4, 5}. Now

as per selection sort, we will start from the first element and look for the

smallest number in the array, which is 1 and we will find it at the index 2.

 Once the smallest number is found, it is swapped with the element at the first

position.

 Well, in the next iteration, we will have to look for the second smallest number

in the array.

 If you look closely, we already have the smallest number/element at the first

position, which is the right position for it and we do not have to move it

anywhere now.

 So we can say, that the first element is sorted, but the elements to the right,

starting from index 1 are not.

 So, we will now look for the smallest element in the subarray, starting from

index 1, to the last index.

 After we have found the second smallest element and replaced it with element

on index 1(which is the second position in the array), we will have the first

two positions of the array sorted.

•

170

 Then we will work on the subarray, starting from index 2 now, and again

looking for the smallest element in this subarray.

Implementing Selection Sort Algorithm

 In the C program below, we have tried to divide the program into small

functions, so that it's easier fo you to understand which part is doing what.

#include <stdio.h>

void swap(int *xp, int *yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

void selectionSort(int arr[], int n)

{

 int i, j, min_idx;

 // One by one move boundary of unsorted subarray

 for (i = 0; i < n-1; i++)

 {

 // Find the minimum element in unsorted array

 min_idx = i;

•

171

 for (j = i+1; j < n; j++)

 if (arr[j] < arr[min_idx])

 min_idx = j;

 // Swap the found minimum element with the first element

 swap(&arr[min_idx], &arr[i]);

 }

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i=0; i < size; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver program to test above functions

int main()

{

 int arr[],n;

// ask user for number of elements to be sorted

 printf("Enter the number of elements to be sorted: ");

 scanf("%d", &n);

 // input elements if the array

•

172

 for(i = 0; i < n; i++)

 {

 printf("Enter element no. %d: ", i+1);

 scanf("%d", &arr[i]);

 }

 selectionSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

}

Introduction to Searching Algorithms

 To search an element in a given array, there are two popular algorithms

available:

a) Linear Search

b) Binary Search

Linear Search

 Linear search is a very basic and simple search algorithm. In Linear search,

we search an element or value in a given array by traversing the array from

the starting, till the desired element or value is found.

 It compares the element to be searched with all the elements present in the

array and when the element is matched successfully, it returns the index of the

element in the array, else it return -1.

•

173

 Linear Search is applied on unsorted or unordered lists, when there are fewer

elements in a list.

Implementing Linear Search

1. Traverse the array using a for loop.

2. In every iteration, compare the target value with the current value of the array.

• If the values match, return the current index of the array.

• If the values do not match, move on to the next array element.

3. If no match is found, return -1.

#include<stdio.h>

int linearSearch(int values[], int target, int n)

{

 for(int i = 0; i < n; i++)

 {

 if (values[i] == target)

 {

 return i;

 }

 }

 return -1;

•

174

int main(void)

{

 int values[],n,target,i;

 printf("Enter the number of elements: ");

 scanf("%d", &n);

 // input elements if the array

 for(i = 0; i < n; i++)

 {

 printf("Enter element no. %d: ", i+1);

 scanf("%d", &values[i]);

 }

 printf("Enter the element to be searched: ");

 scanf("%d", &target);

 int result = linearSearch (values, target,n);

 if(result == -1)

 {

 printf("Element is not present in the given array.");

 }

 else

 {

 printf("Element is present at index: %d", result);

 }

 return 0;

•

175

}

Features of Linear Search Algorithm

a) It is used for unsorted and unordered small list of elements.

b) It has a time complexity of O(n), which means the time is linearly dependent

on the number of elements, which is not bad, but not that good too.

c) It has a very simple implementation.

Binary Search

• Binary Search is applied on the sorted array or list of large size. It's time

complexity of O(log n) makes it very fast as compared to other sorting

algorithms.

• The only limitation is that the array or list of elements must be sorted for the

binary search algorithm to work on it.

Implementing Binary Search Algorithm

1. Start with the middle element:

• If the target value is equal to the middle element of the array, then

return the index of the middle element.

•

176

• If not, then compare the middle element with the target value,

• If the target value is greater than the number in the middle index,

then pick the elements to the right of the middle index, and start

with Step 1.

• If the target value is less than the number in the middle index,

then pick the elements to the left of the middle index, and start

with Step 1.

2. When a match is found, return the index of the element matched.

3. If no match is found, then return -1

#include<stdio.h>

•

177

int binarySearch(int values[], int len, int target)

{

 int max = (len - 1);

 int min = 0;

 int guess; // this will hold the index of middle elements

 while(max >= min)

 {

 guess = (max + min) / 2;

 if(values[guess] == target)

 {

 printf("Number of steps required for search: %d \n", step);

 return guess;

 }

 else if(values[guess] > target)

 {

 // target would be in the left half

•

178

 max = (guess - 1);

 }

 else

 {

 // target would be in the right half

 min = (guess + 1);

 }

 }

 // We reach here when element is not

 // present in array

 return -1;

}

int main(void)

{

 int values[100],n,target,i;

 printf("Enter the number of elements: ");

 scanf("%d", &n);

•

179

 // input elements if the array

 for(i = 0; i < n; i++)

 {

 printf("Enter element no. %d: ", i+1);

 scanf("%d", &values[i]);

 }

 printf("Enter the element to be searched: ");

 scanf("%d", &target);

 int result = binarySearch(values, n, target);

 if(result == -1)

 {

 printf("Element is not present in the given array.");

 }

 else

 {

 printf("Element is present at index: %d", result);

 }

•

180

 return 0;

}

Features of Binary Search

a) It is great to search through large sorted arrays.

b) It has a time complexity of O(log n) which is a very good time complexity.

We will discuss this in details in the.

c) It has a simple implementation.

Scope rules in C

 Scope of a variable is the visibility of that variable within the program or

within function or block.

 C allows us to declare variables anywhere in the program. Unlike other

programming language we need not declare them at the beginning of the

program.

 Because of this feature, developer need not know all the variables that are

required for the program.

 Consider a program to find the sum of two numbers. We can write this

program in different ways: using single main program, by declaring the

variables at the point of access, by using function within the program etc.

//Method 1

•

181

#include<stdio.h>

void main(){

 int intNum1, intNum2;

 int intResult;

 intNum1 = 50;

 intNum2 = 130;

 intResult = intNum1 + intNum2;

 printf("Sum of two number is : %d", intResult);

}

 In this method, all the variables that are accessed in the program are declared

at the beginning of the main function. This is the traditional way of declaring

the variables.

 These variables are available to access to any expression or statements

throughout the main function. These variables cannot be accessed by any

other function or block in the program or other program.

 The variables declared within the function or any block is called local

variable to that function or block. That means scope of the local variables are

limited to the function or block in which it is being declared and exists till the

end of the function or block where it is declared.

 Whenever a local variable is declared, it is not automatically initialized. We

need to explicitly assign value to it.

•

182

//Method 2

#include<stdio.h>

void main(){

 int intNum1, intNum2;

 intNum1 = 50;

 intNum2 = 130;

 int intResult = intNum1 + intNum2;

 printf("Sum of two number is : %d", intResult);

}

 In this method, result variable is declared when sum is calculated in the main

program. Hence intResult comes into existence after it is being declared.

 If we try to access intResult before it is being declared, then the program will

throw an error saying that intResult is not declared.

 Once it is declared, it can be accessed till the end of the main function. That

means scope of the variable exists till the end of the block it is being declared.

 At the same time, intNum1 and intNum2 are declared at the beginning of the

main function and can be accessed throughout the program.

//Method 3

#include <stdio.h>

•

183

int intResult; // Global variable

void main(){

 int intNum1, intNum2;

 intNum1 = 50;

 intNum2 = 130;

 intResult = intNum1 + intNum2;

 printf("Sum of two number is : %d", intResult);

}

 Here the variable intResult is declared outside the main function. It is not

present in any other function or block.

 Hence it is called as global variable. Since this variable is not inside any

block or function, it can be accessed by any function, block or expression.

 Hence the scope of global variable is not limited to any function or block; but

it can be accessed by any function or block within the program. Global

variables are initialized to the initial value defined for its datatype.

 Below is another method of adding two numbers. Here a separate function is

written to add and display the result.

•

184

 Two local variables of main function – intNum1 and intNum2 are passed to

the function. Since it is local variable, it cannot be accessed by any other

functions in the program. Since it passed to the function, these variables can

be accessed by the function AddNum ().

 But here we need to note the difference between the variables in the main

function and AddNum function. The variables in the main function are local

to it and can be accessed by it alone.

 These local parameters are passed to AddNum function, and are local to this

function now. These parameters of function are called as formal parameter of

a function.

 It can have same name as variables passed from the calling function or

different. Suppose we have same name for local variable of main function and

formal parameter.

 In this case, compiler considers both of them as different variables even

though they have same name and value. Here memory address of variables at

main function and AddNum function are different. This type of passing

variable is called pass by value.

 Below we have given different names in both the functions. Even though they

are having same value and same variable is passed to the function, both of

them cannot be accessed in other functions.

•

185

 For example, if we try to access intNum1 and intNum2 in AddNum function,

it will throw an error.

 Similarly, intResult is a local variable of AddNum and can be accesses only

within it

//Method 4

#include<stdio.h>

void AddNum(int a, int b);

void main(){

 int intNum1, intNum2;

 intNum1 = 50;

 intNum2 = 130;

 AddNum(intNum1, intNum2);

// printf("Sum of two number is : %d", intResult);

}

void AddNum(int a, int b){

 int intResult;

 intResult = a + b;

 printf("Sum of two number is : %d", intResult);

}

•

186

 Suppose we declare intResult as global variable. Then we can access it in

either main function or in AddNum function. It will contain the value based

on the last expression that is being evaluated.

 Consider the below program where intResult is declared as global variable. It

can now be accessed from any function. It contains the value depending on

the expression being evaluated in that function.

//Method 5

#include<stdio.h>

void AddNum(int a, int b);

int intResult;

void main(){

 int intNum1=100, intNum2 =200;

 AddNum(intNum1, intNum2);

 intNum1 = 50;

 intNum2 = 130;

 intResult = intNum1 + intNum2;

 printf("Sum of two number is : %d\n", intResult);

}

void AddNum(int a, int b){

•

187

 intResult = a + b;

 printf("Sum of two number is : %d\n", intResult);

}

 From all these examples, we understood that local variables are accessed only

within the function or block it is being declared, whereas global variables are

accessed throughout the program.

 Consider a block of code below:

//Method 6

#include<stdio.h>

void main(){

 int intArr[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for (int index =0, index<10, index++)

 printf("%d\t", intArr[index]);

 //printf("\nIndex = %d\n", index); // this row will throw an error

}

 Here index variable is declared inside the ‘for’ loop. Even though index is

inside the main function, it is declared inside a block in the main function.

 That means even though index is a local variable, for loop is considered as

block and variables declared within it is local to it.

•

188

 Hence we can access index inside the for loop (need not be single line – it can

have more than one line), but it cannot be accessed outside the loop – outside

the block.

 The scope or life span of the variable index expires as soon as for loop ends –

end of block.

Storage classes in C

 In C language, each variable has a storage class which decides the following

things:

a) scope i.e where the value of the variable would be available inside a

program.

b) default initial value i.e if we do not explicitly initialize that variable, what

will be its default initial value.

c) lifetime of that variable i.e for how long will that variable exist.

 The following storage classes are most oftenly used in C programming,

Automatic variables

External variables

•

189

Static variables

Register variables

Automatic variables: auto

Scope: Variable defined with auto storage class are local to the function block inside

which they are defined.

Default Initial Value: Any random value i.e garbage value.

Lifetime: Till the end of the function/method block where the variable is defined.

 A variable declared inside a function without any storage class specification,

is by default an automatic variable.

 They are created when a function is called and are destroyed automatically

when the function's execution is completed.

 Automatic variables can also be called local variables because they are local

to a function. By default they are assigned garbage value by the compiler.

#include<stdio.h>

void main()

{

 int detail;

 // or

 auto int details; //Both are same

•

190

}

External or Global variable

Scope: Global i.e everywhere in the program. These variables are not bound by any

function, they are available everywhere.

Default initial value: 0(zero).

Lifetime: Till the program doesn't finish its execution, you can access global

variables.

 A variable that is declared outside any function is a Global Variable. Global

variables remain available throughout the program execution.

 By default, initial value of the Global variable is 0(zero). One important thing

to remember about global variable is that their values can be changed by any

function in the program.

#include<stdio.h>

int number; // global variable

void main()

{

 number = 10;

 printf("I am in main function. My value is %d\n", number);

 fun1(); //function calling, discussed in next topic

•

191

 fun2(); //function calling, discussed in next topic

}

/* This is function 1 */

fun1()

{

 number = 20;

 printf("I am in function fun1. My value is %d", number);

}

/* This is function 1 */

fun2()

{

 printf("\nI am in function fun2. My value is %d", number);

}

OUTPUT:

I am in function main. My value is 10

I am in function fun1. My value is 20

I am in function fun2. My value is 20

•

192

 Here the global variable number is available to all three functions and thus, if

one function changes the value of the variable, it gets changed in every

function.

extern keyword

 The extern keyword is used with a variable to inform the compiler that this

variable is declared somewhere else.

 The extern declaration does not allocate storage for variables.

 Problem when extern is not used

int main()

{

•

193

 a = 10; //Error: cannot find definition of variable 'a'

 printf("%d", a);

}

Example using extern in same file

int main()

{

 extern int x; //informs the compiler that it is defined somewhere else

 x = 10;

 printf("%d", x);

}

int x; //Global variable x

Static variables

Scope: Local to the block in which the variable is defined

Default initial value: 0(Zero).

Lifetime: Till the whole program doesn't finish its execution.

 A static variable tells the compiler to persist/save the variable until the end of

program.

 Instead of creating and destroying a variable every time when it comes into

and goes out of scope, static variable is initialized only once and remains into

existence till the end of the program.

•

194

 A static variable can either be internal or external depending upon the place

of declaration.

 Scope of internal static variable remains inside the function in which it is

defined. External static variables remain restricted to scope of file in which

they are declared.

They are assigned 0 (zero) as default value by the compiler.

#include<stdio.h>

void test();

int main()

{

 test();

 test();

 test();

}

void test()

{

 static int a = 0; //a static variable

 a = a + 1;

 printf("%d\t",a);

}

•

195

1 2 3

Register variable

Scope: Local to the function in which it is declared.

Default initial value: Any random value i.e garbage value

Lifetime: Till the end of function/method block, in which the variable is defined.

 Register variables inform the compiler to store the variable in CPU register

instead of memory. Register variables have faster accessibility than a normal

variable.

 Generally, the frequently used variables are kept in registers. But only a few

variables can be placed inside registers.

 One application of register storage class can be in using loops, where the

variable gets used a number of times in the program, in a very short span of

time.

NOTE: We can never get the address of such variables.

Syntax :

register int number;

Which storage class should be used and when

•

196

 To improve the speed of execution of the program and to carefully use the

memory space occupied by the variables, following points should be kept in

mind while using storage classes:

 We should use static storage class only when we want the value of the variable

to remain same every time we call it using different function calls.

 We should use register storage class only for those variables that are used in

our program very often. CPU registers are limited and thus should be used

carefully.

 We should use external or global storage class only for those variables that

are being used by almost all the functions in the program.

 If we do not have the purpose of any of the above mentioned storage classes,

then we should use the automatic storage class

Bitwise operators

Bitwise operators perform manipulations of data at bit level. These operators also

perform shifting of bits from right to left. Bitwise operators are not applied to

float or double

Operator Description

& Bitwise AND

| Bitwise OR

•

197

^ Bitwise exclusive OR

<< left shift

>> right shift

Now lets see truth table for bitwise &, | and ^

a B a & b a | b a ^ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

The bitwise shift operator, shifts the bit value. The left operand specifies the value

to be shifted and the right operand specifies the number of positions that the bits in

the value have to be shifted. Both operands have the same precedence.

•

198

MODULE 6

FILES IN C

File Input/Output in C

A file represents a sequence of bytes on the disk where a group of related data is

stored. File is created for permanent storage of data.

In C language, we use a structure pointer of file type to declare a file.

FILE *fp;

C provides a number of functions that helps to perform basic file operations.

Following are the functions,

Function Description

fopen() create a new file or open a existing file

fclose() closes a file

getc() reads a character from a file

putc() writes a character to a file

fscanf() reads a set of data from a file

•

199

fprintf() writes a set of data to a file

getw() reads a integer from a file

putw() writes a integer to a file

fseek() set the position to desire point

ftell() gives current position in the file

rewind() set the position to the begining point

Opening a File or Creating a File

The fopen() function is used to create a new file or to open an existing file.

General Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to the opened

(or created) file.

filename is the name of the file to be opened and mode specifies the purpose of

opening the file. Mode can be of following types,

mode Description

•

200

r opens a text file in reading mode

w opens or create a text file in writing mode.

a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ opens a text file in both reading and writing mode

a+ opens a text file in both reading and writing mode

rb opens a binary file in reading mode

wb opens or create a binary file in writing mode

ab opens a binary file in append mode

rb+ opens a binary file in both reading and writing mode

wb+ opens a binary file in both reading and writing mode

ab+ opens a binary file in both reading and writing mode

Closing a File

•

201

The fclose() function is used to close an already opened file.

General Syntax :

int fclose(FILE *fp);

Here fclose() function closes the file and returns zero on success, or EOF if there is

an error in closing the file. This EOF is a constant defined in the header file stdio.h.

Input/Output operation on File

In the above table we have discussed about various file I/O functions to perform

reading and writing on file. getc() and putc() are the simplest functions which can be

used to read and write individual characters to a file.

#include<stdio.h>

int main()

{

 FILE *fp;

 char ch;

 fp = fopen("one.txt", "w");

 printf("Enter data...");

 while((ch = getchar()) != EOF) {

 putc(ch, fp);

 }

•

202

 fclose(fp);

 fp = fopen("one.txt", "r");

 while((ch = getc(fp)! = EOF)

 printf("%c",ch);

 // closing the file pointer

 fclose(fp);

 return 0;

}

Reading and Writing to File using fprintf() and fscanf()

#include<stdio.h>

struct emp

{

 char name[10];

 int age;

};

void main()

{

 struct emp e;

 FILE *p,*q;

•

203

 p = fopen("one.txt", "a");

 q = fopen("one.txt", "r");

 printf("Enter Name and Age:");

 scanf("%s %d", e.name, &e.age);

 fprintf(p,"%s %d", e.name, e.age);

 fclose(p);

 do

 {

 fscanf(q,"%s %d", e.name, e.age);

 printf("%s %d", e.name, e.age);

 }

 while(!feof(q));

}

In this program, we have created two FILE pointers and both are refering to the same

file but in different modes.

fprintf() function directly writes into the file, while fscanf() reads from the file,

which can then be printed on the console using standard printf() function.

•

204

Difference between Append and Write Mode

Write (w) mode and Append (a) mode, while opening a file are almost the same.

Both are used to write in a file. In both the modes, new file is created if it doesn't

exists already.

The only difference they have is, when you open a file in the write mode, the file is

reset, resulting in deletion of any data already present in the file. While the append

mode is used to append or add data to the existing data of file(if any). Hence, when

you open a file in Append(a) mode, the cursor is positioned at the end of the present

data in the file.

Formatted and Unformatted Input/Output

 Unformatted Input/Output is the most basic form of input/output.

Unformatted input/output transfers the internal binary representation of the

data directly between memory and the file.

 Formatted output converts the internal binary representation of the data to

ASCII characters which are written to the output file.

 Formatted input reads characters from the input file and converts them to

internal form. Formatted I/O can be either "Free" format or "Explicit" format.

Advantages and Disadvantages of Unformatted I/O

 Unformatted input/output is the simplest and most efficient form of

input/output.

•

205

 It is usually the most compact way to store data.

 Unformatted input/output is the least portable form of input/output.

Unformatted data files can only be moved easily to and from computers that

share the same internal data representation.

 It should be noted that XDR (eXternal Data Representation) files, can be used

to produce portable binary data.

 Unformatted input/output is not directly human readable, so you cannot type

it out on a terminal screen or edit it with a text editor.

Advantages and Disadvantages of Formatted I/O

 Formatted input/output is very portable. It is a simple process to move

formatted data files to various computers, even computers running different

operating systems, as long as they all use the ASCII character set

 Formatted files are human readable and can be typed to the terminal screen or

edited with a text editor

 However, formatted input/output is more computationally expensive than

unformatted input/output because of the need to convert between internal

binary data and ASCII text.

 Formatted data requires more space than unformatted to represent the same

information. Inaccuracies can result when converting data between text and

the internal representation.

Free Format I/O

•

206

With free format input/output, IDL uses default rules to format the data.

Advantages and Disadvantages of Free Format I/O

 The user is free of the chore of deciding how the data should be formatted.

Free format is extremely simple and easy to use.

 It provides the ability to handle the majority of formatted input/output needs

with a minimum of effort.

 However, the default formats used are not always exactly what is required. In

this case, explicit formatting is necessary.

Explicit Format I/O

Explicit format I/O allows you to specify the exact format for input/output.

Advantages and Disadvantages of Explicit I/O

 Explicit formatting allows a great deal of flexibility in specifying exactly how

data will be formatted.

 Formats are specified using a syntax that is similar to that used in FORTRAN

format statements.

 Scientists and engineers already familiar with FORTRAN will find IDL

formats easy to write.

 Commonly used FORTRAN format codes are supported. In addition, IDL

formats have been extended to provide many of the capabilities found in

•

207

the scanf () and printf () functions commonly found in the C language runtime

library.

 However, there are some disadvantages to using Explicit I/O. Using explicitly

specified formats requires the user to specify more detail-they are, therefore,

more complicated to use than free format.

 The type of input/output to use in a given situation is usually determined by

considering the advantages and disadvantages of each method as they relate

to the problem to be solved.

 Also, when transferring data to or from other programs or systems, the type

of input/output is determined by the application.

 The following suggestions are intended to give a rough idea of the issues

involved, though there are always exceptions:

a) Images and large data sets are usually stored and manipulated using

unformatted input/output in order to minimize processing overhead. The IDL

ASSOC function is often the natural way to access such data.

b) Data that need to be human readable should be written using formatted

input/output.

c) Data that need to be portable should be written using formatted input/output.

Another option is to use unformatted XDR files by specifying the XDR

keyword with the OPEN procedures. This is especially important if moving

between computers with markedly different internal binary data formats.

d) Free format input/output is easier to use than explicitly formatted input/output

and about as easy as unformatted input/output, so it is often a good choice for

small files where there is no strong reason to prefer one method over another.

•

208

e) Special well-known complex file formats are usually supported directly with

special IDL routines (e.g. READ_JPEG for JPEG images)

Command Line Argument in C

 Command line argument is a parameter supplied to the program when it is

invoked.

 Command line argument is an important concept in C programming.

 It is mostly used when you need to control your program from outside.

 Command line arguments are passed to the main() method.

 Syntax:

int main(int argc, char *argv[])

 Here argc counts the number of arguments on the command line and argv[] is

a pointer array which holds pointers of type char which points to the

arguments passed to the program.

Example for Command Line Argument

#include <stdio.h>

#include <conio.h>

int main(int argc, char *argv[])

•

209

{

 int i;

 if(argc >= 2)

 {

 printf("The arguments supplied are:\n");

 for(i = 1; i < argc; i++)

 {

 printf("%s\t", argv[i]);

 }

 }

 else

 {

 printf("argument list is empty.\n");

 }

 return 0;

}

 Remember that argv[0] holds the name of the program and argv[1] points to

the first command line argument and argv[n] gives the last argument.

 If no argument is supplied, argc will be 1

•

210

CONTENT BEYOND SYLLABUS

3D Array

You can declare a three-dimensional (3d) array. For example,

float y[2][4][3];

Here, the array y can hold 24 elements.

Initialization of a 3d array

You can initialize a three-dimensional array in a similar way like a two-

dimensional array. Here's an example,

int test[2][3][4] = {

 {{3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2}},

 {{13, 4, 56, 3}, {5, 9, 3, 5}, {3, 1, 4, 9}}};

•

211

ENUMERATION (ENUM) IN C

Enumeration (or enum) is a user defined data type in C. It is mainly used to assign

names to integral constants, the names make a program easy to read and maintain.

The keyword ‘enum’ is used to declare new enumeration types in C and C++.

Following is an example of enum declaration.

// The name of enumeration is "flag" and the constant

// are the values of the flag. By default, the values

// of the constants are as follows:

// constant1 = 0, constant2 = 1, constant3 = 2 and

// so on.

enum flag{constant1, constant2, constant3, };

Variables of type enum can also be defined. They can be defined in two ways:

// In both of the below cases, "day" is

•

212

// defined as the variable of type week.

enum week{Mon, Tue, Wed};

enum week day;

// Or

enum week{Mon, Tue, Wed}day;

